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Abstract

Adversarial patch attacks, where the adversary is only allowed to modify a small lo-
calized area of the input image, have recently attracted a lot of attention due to their
attack efficacy in a constrained local environment. However, due to this area constraint,
existing methods either are not successful in producing visually imperceptible patches
or cannot achieve satisfactory performance under targeted attack scenarios. We argue
that current attack methods are not optimized for human imperceptibility as a result
cannot bypass state-of-the-art patch defense techniques. To bridge this gap, we propose
a novel adversarial patch attack based on perceptibility-aware optimization schemes,
achieving a strong targeted attack performance while maintaining the invisibility of the
attached patch. In particular, our method first searches for a proper location for patch
placement by leveraging class localization and sensitivity maps, balancing the suscep-
tibility of the patch location to both victim model prediction and human perception,
then employs a perceptibility-regularized adversarial loss and a gradient update rule
that prioritizes color constancy to optimize the perturbations. Extensive experiments
on image benchmarks and across architectures demonstrate that our method consis-
tently achieves competitive attack success rates compared to existing methods but with a
significantly improved level of imperceptibility. Besides being completely invisible to
human observers, our attack is also stealthy enough to render several state-of-the-art
patch defenses ineffective.
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Chapter 1
Introduction

Artificial intelligence has seen remarkable advancements in recent years, with the de-
velopment of deep neural networks followed by transformers serving as a pivotal
breakthrough(57). Deep learning is a rapidly evolving field that utilizes deep neu-
ral networks to model and solve complex problems. It enables computers to learn from
large amounts of data by automatically discovering intricate patterns and representations
across multiple layers of abstraction. Contrary to traditional machine learning methods,
which often require manual feature engineering, deep learning architectures such as
convolutional neural networks (CNNs) and recurrent neural networks (RNNSs) can au-
tonomously learn hierarchical features from raw data where at each layer the architecture
extract more finer features than the ones encountered in the previous layer(66). This
capabilities has led to breakthroughs in areas such as computer vision, natural language
processing, and reinforcement learning.

From a theoretical standpoint, deep learning seeks to approximate the underlying true
data distribution, which is inherently represented by the training dataset Consequently,
the performance and generalization capabilities of deep learning models are heavily
influenced by the quality and quantity of the available training data. A sufficiently large
and diverse dataset that accurately captures the characteristics of the true distribution en-
ables these models to learn more expressive representations and achieve high predictive
accuracy. However, in practice, constructing datasets that precisely reflect the under-
lying data distribution is a challenging task. As a result, the ability of these models to
generalize effectively to unseen data remains a subject of ongoing scrutiny. Furthermore,
due to the inherent black-box nature of deep learning models, concerns regarding their
interpretability, robustness, and vulnerability to adversarial attacks have been widely
recognized. These challenges underscore the necessity for continued research efforts
aimed at enhancing the security, transparency, and reliability of deep learning systems in
real-world applications.

Deep neural networks are notoriously susceptible to adversarial examples as shown in
Figure 1.1, which are inputs crafted with small, carefully designed perturbations that
intentionally deceive the model into making incorrect predictions (51). Most existing
works considers £,-norm bounded perturbations, where any pixel of the entire input
image can be modified by a small amount described by the perturbation budget and



proposed different attacks to generate such perturbations (6; 14; 25; 36; 37). Imposing
a {,-norm constraint as the perturbation budget, it restricts the perturbation size and
ensures the generated perturbations remain visually invisible to humans. The attempt in
this line of attacks is made such that the resultant adversarial sample closely replicates
its original benign form thus achieving imperceptibility. These attacks have been highly
successful in the digital space and have been the corner stone for a wide range of machine
learning robustness research specifically through adversarial training(36; 56). Despite
the high attack efficacy of these global attacks, their transfer to the physical world or
real world scenarios is highly challenging. The perturbation are curated assuming a
highly constrained environment which is extremely challenging to mimic precisely in
the real world as a result of variations in perspective, imaging noise, and other inherent
transformations in natural settings (1).

+.007 x

. T+
i Vel O.20) ign(v, J(6,2,0)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1.1: An adversarial example represented in Goodfellow at al. (14). A clean image
is subtly perturbed to create an adversarial image that is misclassified by the model,
while remaining imperceptible to the human eye.

A different but related line of research focused on adversarial patch attacks (4; 22),
where the adversary is only allowed to modify a localized region of the input image
but without constraints on how much each pixel can be perturbed. These attacks stand
in contrast to global £,-norm bounded perturbations, which impose constraints on
the overall perturbation size across the entire image. Adversarial patch attacks are
motivated by real-world scenarios where inputs to machine learning models are typically
processed automatically, without manual inspection or validation. Furthermore, defenses
developed before the formalization of adversarial patch attacks primarily relied on
adversarial training with bounded perturbation budgets. Consequently, models trained
under such frameworks were not equipped to counter large, localized perturbations
introduced by adversarial patches, thereby exposing a significant vulnerability from a
defensive standpoint.

Addressing these considerations, adversarial patches developed through these meth-
ods are often extremely visually salient, characterized by highly textured and colorful
appearances. Notably, (22) emphasized that in targeted attack scenarios, the generated



patches frequently exhibit symbolic representations of the target class chosen by the
adversary, as the visual features of the patch align closely with those of the intended
target class. This salient nature also enhanced the attacking efficiency that lead to easier
transfer into physical-world attacks, posing more threats to real-world machine learning
systems deployed for security-critical applications.

Despite being more practical, these adversarial patches can easily raise suspicion from
the perspective of human perception, as they are highly salient in appearance and cannot
maintain homogeneity with the host image. To make the attacks inconspicuous to
humans, multiple studies have developed methods to generate adversarial patches that
look like realistic images such that placing them in the host image does not raise any
suspicion. Maintaining context homogeneity along with high realism is central to this
approach (12; 47; 59). While many attempts have been made to conceal the purpose, the
presence of the adversarial patch still remains visibly discernible in these attack strategies.
Despite their prowess in physical attack capabilities, it is frequently observed that the
perturbations necessary to sustain high attack efficacy, particularly in targeted settings,
are often large, rendering the patch conspicuous.

Padlock (92.7%) Tiger Cat (94.4%) Car Mirror (94 Stingray (90.5%)

Figure 1.2: An example of an adversarial patch represented in Karmon at al. (22). An
adversarial patch is applied to the clean image, causing the model to misclassify it with
high confidence.

Defenses developed to counter adversarial patch attacks typically leverage the high
visual saliency and contiguous nature of the patch region, achieving notable success in
detecting such adversarial manipulations (7; 13; 21; 31; 53; 65). Consequently, from an
adversary’s perspective, the primary objective is to develop an optimization method
aimed at reducing the saliency of the generated patch to evade detection. A line of
research focused on developing such methods to generate adversarial patches that are
entirely invisible to humans (2; 28; 41). However, these works either focus solely on un-
targeted settings or suffer from a significant attack performance drop when considering
the more challenging targeted scenarios. Although high imperceptibility can be achieved
for untargeted attacks, performing targeted attacks is notably more difficult, leading to
limited studies in the field. Admittedly, achieving strong attack capabilities while being
imperceptible is challenging for adversarial patch attacks due to the limited patch size
and the need to avoid saliency, which is often crucial for achieving high attack success
rates. This raises a natural question of whether targeted goals are at all achievable with
visually imperceptible adversarial patches?

Furthermore, these defense mechanisms generally employ preprocessing operations



applied to incoming samples to mitigate the effects of adversarial patches. However, a
significant limitation of most of these methods lies in their reliance on complex, multi-
stage processes that often include at least one computationally intensive phase, frequently
involving an autoencoder. While this approach can enhance effectiveness, it renders
these defenses less practical for real-world applications, especially in scenarios requir-
ing low-latency or resource-constrained environments. Consequently, their utility is
largely confined to digital spaces, where computational resources are less restrictive
and latency requirements are less stringent. In addition to that, in applications like face
recognition, systems often processes digital format of input instead of real time detection
in order to identify individuals. This makes the exploration of the digital landscape
important specifically in terms of adversarial patch attacks where imperceptibility and
inconspicuous nature of the patch generated is of paramount importance.

1.1 Motivation, Research Objectives and Problem Setup

Adversarial patch attacks present a significant threat to machine learning models, par-
ticularly in security-sensitive applications, but their high visual saliency makes them
vulnerable to detection. While existing imperceptible techniques attempt to reduce patch
visibility, they often come at the cost of reduced attack effectiveness, especially in targeted
scenarios. The key challenge lies in balancing strong attack performance with imper-
ceptibility, as minimizing saliency can weaken the adversarial impact. Current defense
mechanisms capitalize on the patch’s highly salient visual attributes, relying on complex,
multi-stage processes that, while effective, are resource-intensive and impractical for
real-time applications—though still viable in digital environments. This underscores
the need for a general optimized adversarial patch generation method that enhances
both attack success and imperceptibility to human vision, and by extension, to defense
methods that rely on similar principles, with the potential to transition into real-world
applications.

In this work, we intend to answer the aforementioned questions affirmatively by aiming
to develop a general perceptibility-aware framework for the generation of adversarial
patches that are imperceptible to human vision while achieving high targeted attack
success rates in the digital domain. The proposed framework is designed such that the
underlying principles can be seamlessly adapted to the real-world applications with
minimal modifications if necessary.

Imperceptibility in adversarial attacks has traditionally been approached through bounded
perturbations, typically enforced using the £,-norm constraint. While this approach has

demonstrated partial success, it is often insufficient in the context of localized attacks,

such as adversarial patch attacks, where achieving targeted success frequently necessi-

tates a higher magnitude of perturbation. This increased perturbation typically results in

highly textured patches that are easily detectable by human observers.

We hypothesize that by aligning the perturbation update process with human perceptual
mechanisms—paying particular attention to factors influencing human visual percep-
tion—it is possible to generate adversarial patches that remain inconspicuous even when
high levels of perturbation are applied. Furthermore, given that many existing defense
mechanisms are designed based on human visual perception, adversarial patches opti-
mized using our proposed perceptually guided approach have the potential to evade
such defenses effectively.

The proposed framework leverages advances in attack methods along with insights from



human perception to refine the adversarial optimization process, thereby ensuring that
the generated patches exhibit both high attack efficacy and imperceptibility. This work
contributes to the advancement of adversarial attack methodologies by addressing the
trade-off between perturbation magnitude and perceptual stealthiness, with potential
applications in both digital and physical domains. The goal of this work is to develop a
novel perceptually-aware optimization framework for generating adversarial patches
that are both effective and imperceptible.

1.2 Key Research Contributions

We propose a novel method based on a series of perceptibility-aware optimization
schemes, realizing the targeted attacker’s goals with imperceptible adversarial patches
(see Figure 4.1 for the overall pipeline). Most prior work did not consider the sensitivity
of the human visual system with respect to patch placement and perturbation generation,
which we argue plays a vital role in contributing to the success of our design. Specifically,
our method first locates a patch region in the host image that optimally balances the
class localization and sensitivity scores, enabling a strategic advantage in both attack
capabilities and imperceptibility (Section 4.2). After the localization step, our method
iteratively updates the patch by restricting the changes in base color and regularizing the
adversarial loss using a human perception-based distance, which reduces the saliency of
the resulting patch and further promotes imperceptibility (Section 4.3). By conducting
extensive experiments on benchmark datasets for image classification and recognition
tasks, we demonstrate that compared with state-of-the-art patch attacks, our method
achieves comparable or even higher attack success rates but with a significantly improved
degree of invisibility across various targeted attack scenarios (Sections 7). Moreover,
we show that the adversarial patches generated by our method can successfully bypass
various patch defenses, confirming the stealthiness of our attack (Section 7.3). The high
stealthiness and strong capabilities of the adversarial patches generated by our method
call for an urgent need to develop better defense strategies to detect and mitigate such
stealthy attacks.

1.3 Qutline

Our work is structured into seven chapters to give a comprehensive analysis of ad-
versarial patch attacks with specific focus on conducting imperceptible patch attacks.
In Chapter 2, we delve into the existing literature on adversarial patch attacks, exam-
ining their strengths and weaknesses. We then explore techniques for improving the
imperceptibility of these attacks, drawing insights from both the adversarial patch and
general adversarial example domains. Finally, we review current defense mechanisms
specifically designed to counter adversarial patch attacks. Chapter 3 introduces the
preliminary concepts and knowledge that forms the foundation of this work and will
be referred to as and when required during the due course of this thesis. This chapter
provides a foundational overview of deep neural networks, adversarial patch attacks,
and the challenges they pose. It delves into defense mechanisms against these attacks
and explores the critical concept of imperceptibility, along with the metrics used to
evaluate it. In chapter 4 we describe our methodology where we give details on imple-
mentation and strategic design considerations of the perceptibility-aware perturbation
optimization method that we propose. Chapter 5 establishes the different experimental



setups that are used to evaluate the proposed method’s efficacy both in terms of attack
ability and imperceptibility. This is followed by chapter 6 which shows the initial results
obtained on Stanford Dogs Dataset as a proof of concept. Chapter 7 gives detailed and
comprehensive evaluation of the method on ImageNet including method performance
and its comparison to other state-of-the-art methods. This is followed by performance
against existing defense methods, concluding with analysis on transferability aspects
into the real world. In chapter 8 we delve into a more realistic case of face recognition
and evaluated our method on VGG Face dataset. We showcase factors affecting our
attack method through ablation studies presented in chapter 9. Chapter 10 presents
the findings of this research and discusses their implications. It also offers key insights
into the methodology, its implication from both an attack and a defense perspective and
limitations suggesting potential avenues for future research. We Conclude with Chapter
11 where we highlight the central contributions and takeaway of this work in to the
world of adversarial machine learning.



Chapter 2
Related Work

In this section, we attempt to provide a bridge between the existing works of adversarial
patch attacks and the perspective of imperceptibility in adversarial attacks and how the
latter aids the former. We provide an overview of recent advancements in adversarial
defense methods and offer a detailed account of the current state of research in this area.

2.1 Adversarial Patch Attacks

The foundational ideas about adversarial patch attacks conducted in the form of printable
sticker was initial done by Brown et al. (4) where they introduces a method for creating
universal, robust, and targeted adversarial patches capable of attacking image classifiers
in real-world scenarios. These patches are ideally expected to be universal, that is work-
ing across different scenes; robust, remaining effective under various transformations;
and targeted, forcing classifiers to predict a specific target class. The central idea that lead
to the popularity of this form of attack is its promise of print-ability which would allow
for the attack to be transferred to the physical world. the study proved their efficacy by
misleading classifiers into predicting the chosen target class, with successes even in the
physical world. This work was closely followed by Karmon et al. (22), who followed a
similar methodology specifically targeting the digital space. They studied both universal
as well as instance specific attack methods where patch for each input instance is created
separately. Designing specific experiments they were also able to successfully challenge
the initial claim by (4) that: adversarial patches are effective because its saliency which
captures the entirety of the network’s attention. They further highlighted that often types
the patches generated closely resembles miniature and symbolic representations of the
target class. Hayes (15) introduced a defense method against the existing adversarial
method while describing an innovative idea of spreading the formed adversarial patch
to sparsify the formed patch to evade the proposed defense method.

Apart from targeting classification task numerous studies also have targeted object detec-
tors with similar methodology which involves visually susceptible adversarial patches.
Liu et al. (32) introduced DPATCH that is highly effective, reducing detection perfor-
mance quantified by mAP scores of Faster R-CNN and YOLO from 75.10% and 65.7%



respectively to below 1%. Unlike adversarial patch, DPATCH is optimized to reduce
performance for both object classification as well as regression task for the bounding
boxes. It offers several advantages, including the ability to perform untargeted and
targeted attacks, location-independent effectiveness, and strong transferability across
different detectors and datasets. DPAttack by Wu et al. (63) introduces a novel approach
using diffused patches, such as asteroid-shaped or grid-shaped patterns, that alter only a
small number of pixels while effectively fooling object detectors. Huang et al (19) focused
on reducing the perceptibility concerns associated with patch attacks concerning object
detectors by highlighting that perceptible perturbation as unnecessary for effectiveness
of the attack. Through RPAttack, it introduces a novel approach that creates minimal
yet highly efficient perturbations. It employs a patch selection and refining scheme to
identify the most critical pixels for the attack while gradually eliminating inconsequential
perturbations. Additionally, it balances the gradients of different detectors to ensure
stable ensemble attacks.

2.2 Imperceptibility in Adversarial Patch Attacks

We classify imperceptibility in adversarial patch attacks into two categories: Context
Homogeneity and Host Constancy. Context Homogeneity refers to approaches that lever-
age inherent human knowledge about the environment in which the attack is executed.
Here, the attacker’s objective is to maintain contextual homogeneity between the applied
patch and its surrounding environment, ensuring the patch remains inconspicuous to
observers. Here, the visibility of the perturbation itself is not the primary concern. In
contrast, Host Constancy focuses on achieving complete invisibility with respect to the
host image by designing perturbations on the adversarial patch that seamlessly integrate
with the original image, making the patch appear as a natural part of the original content.

2.21 Attacks Prioritizing Context Homogeneity

Although patch visibility is not a matter of central importance in these initial works, the
latter works aim to make the generated adversarial patches inconspicuous such that they
raise minimized suspicion to human observers. For instance, Sharif et al. (46) proposed to
incorporate eyeglasses featuring a unique texture to launch an attack on face recognition
systems. Eykholt et al. (12) proposed to conceal black and white adversarial patches
on traffic signs to attack traffic sign classifiers and more broadly autonomous driving
systems. Liu et al. (30) leveraged PS-GAN, a specific type of generative adversarial
network (GAN), to produce adversarial stickers with high visual fidelity. The study also
emphasized the importance of context homogeneity, ensuring that the applied patch
seamlessly blends with the benign image, rendering the perturbation inconspicuous to
observers. Observing the highly perturbed appearance of the formed patches, Wang et
al. (59) proposed VRAP, a novel adversarial patch generation algorithm that produces
visually realistic patches capable of fooling deep neural networks in both digital and
physical environments. Although the aforementioned methods can lower suspicion to
certain extents, the adversarial patch usually remains visibly discernible when placed in
the host image or relies on prominent semantic features of another object class to fool the
victim model. Zolfi et al. (69) designed adversarial patch attacks for detection tasks by
leveraging the idea of patch blending to make the patterns as unnoticeable as possible.



2.2.2 Attacks Prioritizing Host Constancy

Another line of research focused on rendering the patch entirely invisible, exemplified
by the work of Bai et al. (2). In particular, Bai et al. (2) proposed to use multiple
Generative Adversarial Networks (GANs) to generate adversarial patches at different
scales, resulting in patches that closely resemble the original image. However, the
computational complexity of training multiple GANSs for each image is impractical.
Qian et al. (41) exploited the model’s perceptual sensitivity to determine the location of
perturbations, but this method does not confine the attack region, potentially leading to
widespread perturbations, which contradicts the conventional goal of patch attacks. Both
these works considered the scenario of untargeted attacks but refrained from extending
their work to targeted attacks. In addition, GDPA by Li et al. (28) utilized a generator
to create both dynamic and static patch patterns, determining their locations within
the input image and leveraging the idea of using a soft mask to place the patches such
that the invisibility of the patches can be enhanced. Although these works attempted
to encompass the targeted attack settings, the trade-off between visibility and attack
efficacy is heavily skewed, as reduced visibility stemming from reduced perturbation
led to a significant drop in performance. This seems to suggest an inherent requirement
of large perturbation to conduct targeted patch attacks.

2.3 Imperceptibility in Adversarial Examples

In a broader context of adversarial attacks, imperceptibility refers to ensuring the ad-
versarial example closely resembles the original image to the extent that it remains
undetectable by humans. The human visual system is relatively insensitive to changes
in color values in regions of higher variation. Out of these high-variance locations the
high-textured regions receive even lesser attention from human perception relative to the
perturbations done on the edges of the image, because of the prior knowledge about the
structures of edges (29). Following this notion, Luo et al. (35) realized that perturbations
made in locations of high variance are less visible than perturbations made in areas with
low variance. Croce et al. (8) further added that perturbations on the horizontal and
vertical edges are more noticeable, thereby restricting perturbations from those locations
could lead to better imperceptibility. Changing only the saturation and brightness of a
pixel can be used to mimic different quantized levels of the same base color. Quantization
errors can be hidden effectively in high-textured locations, thus perturbations that only
alter the saturation and brightness of a pixel and not the base color can achieve a better
camouflaging effect (8; 11; 29). Moreover, prior work has been done on restricting the
added noise by incorporating a e-budget on the perturbation or using its ¢, norm as a
regularization term on the final objective function (12; 14; 36; 37; 51). While having an e
budget enhances imperceptibility, in the context of adversarial patches where the space
for the attack is restricted, conducting targeted attacks with limited perturbation is highly
non-trivial. In addition, despite ¢, norm-based approaches working well in limiting
the perturbation values, they are agnostic to human perception and treat every pixel
equally. Luo et al. (35) proposed a distance metric taking into account human perception
which we hypothesize can be a better regularization term for imperceptibility. In this
work, we argue that the human perception-oriented strategies can facilitate storing large
perturbation values which we hypothesize are instrumental in conducting imperceptible
targeted adversarial patch attacks. We thus propose our novel pipeline to generate
adversarial patches that are highly effective in attacking image classifiers while being
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convincingly stealthy.

2.4 Defense against Adversarial Patch Attacks

The growing body of research on defense against adversarial patch attacks has predomi-
nantly focused on the saliency of such attacks, leveraging the distinct visual and statistical
characteristics of adversarial patches to develop defense mechanisms. These current
attack methods generate localized perturbations that exhibit unique properties compared
to benign image regions, such as higher entropy, distinctive and highly texture patterns,
and distributional discrepancies. Consequently, many defense strategies capitalize on
these attributes for patch detection, segmentation, and removal. A variety of approaches
have been proposed which are often multi step processes, including entropy-based
methods that identify anomalous high-variance regions (53), saliency maps constructed
through guided backpropagation methods followed by simple image preprocessing
operations (15), autoencoder based architecture for segmentation and detection (31; 65),
generative models that reconstruct perturbed areas (7), and diffusion-based frameworks
that leverage learned priors to restore original content(13; 21).

Among the diversity in methodologies, a common underlying assumption across ex-
isting defenses is that adversarial patches possess visually or statistically detectable
signatures that can be effectively exploited to mitigate their impact. These defense meth-
ods, grounded in the assumption of adversarial patch saliency, predominantly focus
on features that are readily identifiable by the human visual system. They are closely
aligned with human perceptual mechanisms for detecting anomalies, such as texture in-
consistencies and unnatural patterns. Consequently, although the initial consideration to
conduct adversarial attacks eliminates human manual inspection, these defense methods
inadvertently encode similar perceptual heuristics. They leverage characteristics such
as unnatural textures and irregular patterns, which are inherently conspicuous to the
human visual system, to identify and mitigate adversarial patches. In contrast, some
methods have also approached patch detection through adversarial purification, aiming
to refine or cleanse the inputs to reduce the effectiveness of adversarial manipulations
without relying solely on perceptible cues.

24.1 Defense via High-Saliency Region Detection

Hayes (15) approached adversarial patch defense as an inpainting problem, addressing
it at two levels: non-blind and blind inpainting. In the non-blind setting, where the
perturbation’s location is known, the corrupted region is reconstructed using inpainting
methods like the Telea algorithm (54). In the blind setting, where the location is unknown,
a saliency map generated via guided backpropagation highlights high-influence regions,
which are further refined using morphological operations to isolate adversarial patches.
Jujutsu by Chen et al. (7) is a two-stage defense framework designed to detect and miti-
gate adversarial patch attacks on deep neural networks (DNNs). The first stage, similar
to (15), focuses on attack detection by leveraging saliency maps to identify suspicious
localized features that exert a dominant influence on the model’s predictions. The study
acknowledges that salient regions can also correspond to non adversarial features, hence
to enhance detection accuracy and reduce false positives, Jujutsu applies a pre-processing
step to the salient map generated. This is followed by guided transplantation of the sus-
pected adversarial features to hold-out input to further validate the presence of an attack
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through its success on the augmented input. Once the perturbed location is determined
generative adversarial networks (GANSs) are used to reconstruct the corrupted regions
within the image, effectively restoring clean content and enabling correct classification by
the DNN. Tarchoun et al. (53) along the same line approached patch detection through
an information-theoretic approach. The method introduces two key techniques: entropy
analysis and autoencoder-based patch completion. First, Jedi utilizes entropy analysis to
identify potential adversarial patch regions which is then refined by an autoencoder that
enhances the localization accuracy along with completion of the proposed patch. This is
followed by inpainting.

Liu et al. (31) proposed the Segment and Complete (SAC) defense framework to protect
object detectors against adversarial patch attacks. The framework employs a U-Net-
based patch segmenter, trained with pixel-level annotations to generate patch masks for
adversarial localization. To improve robustness of the patch segmenter, a self-adversarial
training algorithm is introduced. Finally, a shape completion algorithm guarantees
complete patch removal if the predicted mask is within a specified Hamming distance
from the ground truth. PatchZero by Xu et al. (65) is a general defense pipeline designed
to counter white-box adversarial patch attacks without requiring retraining of down-
stream classifiers or detectors. The method leverages the general notion discussed, that
from the observations the adversarial patches are highly textured and visually distinct
from natural images. Moving along the same direction as Liu et al.(31), PatchZero de-
tects adversarial regions at the pixel level by utilizing a patch detector that predicts a
pixel-wise adversarial binary mask. The method then mitigates the adversarial effect
by masking out the patch region from the perturbed input located by the generated
mask and repainting it with mean pixel values. Additionally, it incorporates a two-stage
adversarial training scheme to enhance robustness against stronger adaptive attacks.

2.4.2 Defense via Adversarial Purification

Several preprocessing-based defense methods have been proposed for global attacks
which aims to retrieve the original benign sample by removing the added perturbation
using generative models. Pouya et al. (43) utilized GANSs to defend against adversarial
perturbation by modeling the distribution that represents the benign samples. With the
advent of more capable generative model which have able to achieve state-of-the-art
performance in generative tasks (9; 18), recently diffusion models have been utilized for
the purification task as well(38; 48; 50; 58; 58; 64). Guided diffusion model for purifi-
cation (GDMP) by Wang et al. (58) integrates purification into the diffusion-denoising
process of Denoised Diffusion Probabilistic Model (DDPM) to mitigate adversarial per-
turbations. DiffPure (38) incrementally introduces Gaussian noise during the forward
diffusion process and subsequently removes it through the reverse generation phase,
effectively purifying the adversarial perturbations in the process. Xiao et al. (64) pro-
posed DensePure, which denoises adversarial samples by generating multiple reversed
samples through repeated reverse diffusion runs, followed by majority voting using the
target model to recover the target class. These methods however, are specifically trained
to handle /,,-norm bounded adversarial perturbations and hence are not ideally designed
to located adversarial patches and hence their mitigation.

The works by Kang et al. and Fu et al. (13; 21) are some of the approaches that are
developed recently which extends the use of diffusion models in defending against
adversarial patch attacks. DIFFender introduced by Kang et al. (21), is a novel defense
framework that leverages the capabilities of a text-guided diffusion model to counter
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adversarial patch attacks. At its core is the discovery of the Adversarial Anomaly Per-
ception (AAP) phenomenon, which enables the diffusion model to detect and localize
adversarial patches by analyzing distributional discrepancies. DIFFender combines
patch localization and restoration tasks within a unified diffusion model framework.
Additionally, it employs vision-language pre-training and a few-shot prompt-tuning
algorithm to adapt the pre-trained diffusion model to defense tasks without requiring
extensive retraining. Fu et al. (13) introduced DiffPAD that forms a framework designed
to address adversarial patch attacks by leveraging the capabilities of diffusion models for
adversarial patch decontamination. The framework begins with super-resolution restora-
tion on suspected downsampled input images, followed by a binarization and dynamic
thresholding scheme combined with a sliding window approach to effectively localize
adversarial patches. Once the patch region is localized, DiffPAD applies inpainting
techniques to restore the original image.



Chapter 3
Preliminaries

3.1 Introduction to Deep Neural Network for classification

Deep Neural Networks (DNNs) have significantly advanced classification tasks across
various domains, including image recognition, speech processing, and natural language
understanding (27). These models, inspired by biological neural networks, consist
of multiple layers that learn hierarchical feature representations. Among the most
widely used architectures for classification are Convolutional Neural Networks (CNNs),
Transformers, and Ensemble models, each designed to handle specific challenges in
pattern recognition and decision-making.

3.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specialized deep learning models that excel
in analyzing structured grid-like data, such as images (24). They utilize convolutional
layers to extract spatial features by applying learnable filters, thereby reducing the
need for manual feature engineering. CNNs achieve translation invariance through
pooling layers and maintain computational efficiency while preserving important spatial
information. Popular CNN architectures such as AlexNet (24), VGGNet (49), ResNet (16),
and EfficientNet (52) have demonstrated remarkable performance in large-scale image
classification tasks.

3.1.2 Transformers

Transformers, initially introduced for sequence modeling in natural language processing
(57), have been adapted to computer vision tasks, leading to the development of Vision
Transformers (ViTs) (10). Unlike CNNs, which rely on local receptive fields, transformers
utilize self-attention mechanisms to capture long-range dependencies in data, allowing
them to model global relationships between image regions. Recent architectures, such as
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Swin Transformer (34), have further optimized this approach by incorporating hierarchi-
cal feature extraction and computational efficiency. These models have demonstrated
state-of-the-art performance in several benchmark datasets, surpassing traditional CNNs
in certain scenarios.

3.1.3 Ensemble models

Ensemble models combine multiple classifiers to enhance overall performance, robust-
ness, and generalization. Techniques such as bagging (3), boosting (44), and stacking (62)
leverage the diversity of individual models to reduce variance and improve prediction
reliability. In image classification, ensembles of CNNs and transformers have been shown
to outperform individual models, particularly in adversarial settings where robustness is
critical (56).

3.2 Adversarial Attacks

Adversarial attacks exploit the vulnerabilities of machine learning models by introducing
small, often imperceptible perturbations that cause incorrect predictions (51). These
attacks pose significant security risks in applications such as biometric authentication,
autonomous driving, and medical diagnosis. Depending on the attacker’s level of access
to the target model, adversarial attacks are classified into different scenarios:

3.2.1 Different Attack Scenarios

Black-Box

In black-box attacks, the attacker has no access to the model’s internal parameters,
gradients, or architecture. Instead, they rely on querying the model and observing
its outputs to craft adversarial examples (39). Common black-box attack techniques
include transferability-based attacks (33), query-based methods (20), and surrogate
model training (14).

White-Box
White-box attacks assume full knowledge of the target model, including its parameters
and gradients. This allows attackers to generate highly optimized adversarial pertur-

bations. Well-known white-box attacks include the Fast Gradient Sign Method (FGSM)
(14), Projected Gradient Descent (PGD) (36), and Carlini & Wagner (C&W) attack (6).

3.2.2 Targeted and untargeted setting

Depending on the specificity of adversary’s goal in terms of model’s prediction we have
two scenarios:

Targeted Attacks

The goal is to force the model to misclassify an input as a specific incorrect label (25). This
is particularly dangerous in security-sensitive applications, such as facial recognition
systems.

Untargeted Attacks
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The objective is to cause any form of misclassification without specifying the incorrect
output class. These attacks degrade model performance and are generally easier to
execute (51).

3.3 Adversarial Patch Attacks

Unlike traditional adversarial attacks, adversarial patch attacks introduce localized,
structured perturbations known as patches that mislead classifiers without requiring
access to the entire image (4). These attacks are particularly potent in real-world scenarios,
as they remain effective under transformations such as resizing, rotation, and occlusion
(65). Adversarial patches have been successfully deployed against object detection
models, facial recognition systems, and autonomous vehicles.

3.4 Discriminative Task

Discriminative tasks involve classifying input data into predefined categories based on
learned patterns. Two critical applications affected by adversarial attacks are image
classification and face recognition.

3.4.1 Image classification

Image classification assigns labels to images based on learned features. Deep learning
models, particularly CNNs and transformers, have achieved high accuracy in this do-
main (16). However, adversarial attacks significantly threaten their reliability, as small
perturbations can lead to incorrect predictions (51).

3.4.2 Face Recognition

Face recognition systems identify or verify individuals based on facial features. Adver-
sarial attacks on these systems can lead to unauthorized access or identity impersonation
(46). Adversarial patches, in particular, have been shown to bypass facial recognition by
strategically modifying facial regions (Komkov & Petiushko, 2021).

3.5 /,-norm bounds for Imperceptibility

Imperceptibility of adversarial perturbations is typically quantified using /p-norm con-
straints. fo-norm is measures as the number of modified pixels, favoring sparse per-
turbations (6). ¢>-norm is measures as the Euclidean distance between original and
adversarial images, ensuring smooth modifications (51). /.-norm captures the maxi-
mum pixel-wise perturbation, constraining the worst-case distortion(36). These form
of norm-constrained optimization ensures the overall perturbation added to the whole
of image which although induces some level of imperceptibility but these restrictions
do not take into consideration the sensitivity of human visual system. For most part of
adversarial machine learning literature, imperceptibility has always been argued as a
notion that can be primarily be achieved using such bounds to the perturbation budget.



Chapter 4
Methodology

In this section, we explain the details of our proposed attack pipeline (Figure 4.1). We
address the challenge of balancing attack effectiveness and imperceptibility from two
complementary perspectives. First, we focus on strategically positioning the adversarial
patch in regions of the target image that provide a dual advantage: maximizing the attack
success rate while minimizing visual detectability. This involves first identifying the
optimal location of patch placement that inherently facilitate the adversarial objective
without drawing human attention. To achieve this objective, our method considers
both the attack capabilities of the proposed attack method and its imperceptibility
to the human visual system (Section 4.2). Second, we aim to develop optimization
update strategies that incorporate principles of the human visual system, ensuring that
perturbations are applied in a manner that aligns with perceptual characteristics that
facilities imperceptibility. To achieve this, the perturbations are optimized by minimizing
a regularized targeted adversarial loss using proposed color constant gradient updates
(Section 4.3). Every stage of our proposed method is meticulously crafted to optimize the
visual imperceptibility of the generated adversarial patch, enabling the accommodation
of high-magnitude perturbations that remain inconspicuous to the human eye while
effectively achieving the intended adversarial objectives.

4.1 Problem Formulation

We consider targeted, white-box settings for adversarial patch attacks. Assume the
attacker has the full knowledge of a victim model fy with model parameters 6. Let an
RGB image ¢ € X C RWXH*C be a correctly classified benign sample, y € Y be the
ground-truth class label of &, and y;are be the class label that the attacker aims to target
for. The adversarial input & is generated by placing an adversarial patch of width w and
height / on the benign sample x at a certain localized region indexed by (i, j) such that
fo(&) = Ysarg. More rigorously, & is defined as:

z=1-m)Ox+maoj, 4.1)
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where m € {0,1}">*#*% ig a location mask such that my,; . = 1ifi < k < i+ w,
j<l<j+handce C,and 0 otherwise, § € RV*HxC and ® stands for the element-
wise multiplication. For the ease of the presentation, we use the following simplified
notation to denote an adversarial input and the attached adversarial patch throughout
the paper:

:& =@ +'L$] 67 (4.2)

where +; ;0 denote placing the patch 4 at location (¢, j) of the benign sample.

4.2 Optimization of Patch Placement

The central idea of this optimization step is to place the patch at a location that is highly
vulnerable to adversarial perturbations and can host high perturbations such that the
targeted goals can be achieved with adversarial patches without being visually salient.
From a technical perspective, our objective is to target specific regions within the image
where small perturbations can induce significant changes in the model’s output. In other
words, we aim to identify locations where the gradient of the loss function with respect
to the pixel values is high. Previous studies have shown that models contain visually
sensitive zones that play a significant role in their predictions (5; 67), making them more
susceptible to attacks in these regions (30; 41). These regions offer a strategic advantage
by enabling successful adversarial attacks with minimal perturbations. Although, it
can be argued that these vulnerable locations might require less perturbation for an
attack to be successful—potentially making the adversarial patch less noticeable and
hence desirable, these regions are frequently observed to be highly sensitive to human
observers as well from our observations. Often times it was observed that these highly
attackable sensitive locations coincide with areas that are also highly sensitive to human
perception. This consequently limits their capacity to accommodate large perturbations.
As a result, even minor perturbations in these regions can produce noticeable visual
artifacts, making them more susceptible to detection by the human visual system.

Therefore, we aim to integrate the sensitivity of the human visual system into the opti-
mization process to achieve a balanced trade-off between attack efficacy and impercepti-
bility. By incorporating perceptual sensitivity, our goal is to identify an optimal patch
location that effectively exploits model vulnerabilities while remaining inconspicuous to
human observers. To account for human perception, we aim to develop a sensitivity map
that identifies pixel-level regions within an image that exhibit low sensitivity to human
vision (Figure 4.4). Variance in an image is a measure of the dispersion of pixel intensity
values within a local region of the image, indicating the level of texture complexity and
contrast. Higher variance regions typically contain more detailed textures and rapid
intensity changes, while lower variance regions are smoother and more uniform in
appearance (Figure 4.2). Contrary to highly sensitive locations that are characterized
by relatively low variance values, regions with high variance, particularly those with
intricate textures, can accommodate significantly large perturbations while remaining im-
perceptible to human scrutiny (29). These areas have been favored for global adversarial
attacks (8; 35).
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Figure 4.1: The overall pipeline of our method for conducting targeted attacks with
imperceptible adversarial patches, consisting of both patch localization and iterative
patch update blocks.

However, in adversarial patch attacks, the attack region is restricted within a localized
region, thereby limiting the attack’s area and hence effectiveness. Consequently, a
reliance solely on high perturbation levels on pixels with high perturbation affinity,
without strategic placement to enhance attack ability, may not yield a desirable result.
Therefore extrapolating the knowledge pertaining to imperceptibility gained from global
adversarial attacks into adversarial patch attack, our patch localization step is designed to
arrive at an equilibrium that balances the vulnerability of the location and the capability
to accommodate large perturbations without being visually salient. More specifically,
we propose a notion of perturbation priority index G(x; 1, j) for any possible location
(i, 7) with respect to the victim model f and (z, y), where the optimal location (', j') is
determined based on G(x; i, 5):
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(a) High Variance Region

(b) Low Variance Region

Figure 4.2: Illustration of high and low variance regions within an image. High variance
regions can accommodate larger perturbations while remaining less perceptible, whereas
low variance regions are more sensitive to visual changes.
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(4.3)

where h and w represent the height and width of the patch, J,(-,-) denotes the class
localization map capturing the model susceptibility with respect to the ground-truth
label class y, and Sens(-, -) is the sensitivity map capturing the perturbation sensitivity to
human visual system. The perturbation priority metric aims to strike a balance between
two aspects, seeking the most optimal location (4, j), the window from which has the
highest value for G(x; i, j) such that it facilitates attack capabilities, while also showing a
high affinity for accommodating large perturbations.

4.2.1 Estimating Model Sensitivity through Class Localization Map

To obtain the class localization map Jy(-,-), we employ Grad-CAM (45). Since we
consider white-box settings, we can directly employ the parameters of the victim model
fo to obtain model-specific attention maps for the given input image «. The computation
process involves computing the gradient of the last fully connected layer’s output
denoted as gy(x,y), where y is the ground-truth class of the benign input z. Let A*
be the k-th feature map of the model’s last convolution layer and o] be its weight that
characterizes the importance of k-th feature map in predicting class label y. To be more
specific, o} is calculated by taking a global average pool over its calculated gradient as
follows:
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Target Model fy() (a) High Sensitive Location

Grad-CAM

(b) Low Sensitive Location

Input Image Model Sensitivity

Figure 4.3: Illustration of the Model Sensitivity /Class Activation Map generated using
Grad-CAM. The optimization process aims to identify regions that are high sensitivity to
adversarial perturbations.
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where u and v are the height and width of the feature map A*. The final class localization
map is calculated as the weighted sum of all feature maps followed by a ReLU function
given by:

Jy(x;4,7) = ReLU(Z ay - Afj), for any pixel location (4, j). (4.5)
ko

4.2.2 Estimating Human Perception Sensitivity through Sensitivity
Map

Following prior works (8; 35), we aim to position the patch in regions of high variance,
while avoiding placement on object edges that are aligned with the coordinate axes. To
ensure both factors when defining the sensitivity map Sens(-, -), we calculate the mean
standard deviation of the pixel across the color channels along the horizontal and vertical
axes, considering adjacent pixels, denoted as of; and o, respectively. Finally, the value
of the sensitivity map at (¢, j) is computed as the reciprocal of the standard deviation
given by:

Sens(x;i,j) = where 0;; = /min(c¥;,0?.), 4.6)

1
where A > 0 is a small value chosen to prevent division by zero. The sensitivity map
induces a human perspective to the perturbation priority measure G(x) in terms of
perturbation sensitivity, such that those locations that cannot host large perturbations
have a higher sensitivity than their counterparts. In the following, we use J,(x) and

Sens(z) for the class localization and sensitivity maps of x.
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Algorithm 1 Imperceptible Adversarial Patch Attack

1: Input: benign example (x,y), target class ytarg, Victim model fy, and parameters
S? T’ 777 w7 h’

2. Jy(x) < compute the class localization map of « based on Equation 4.5
3:  Sens(zx) < compute the sensitivity map of « based on Equation 4.6
4 (¢,4') « find the optimal patch location based on Equation 4.3
5. m < define the mask indexed by (7', j') with patch size w x h
6: Initialize 8¢ < x
7. fort=0,1,...T —1do
8: if prediction confidence fy(ytarg|®) > s then
9: return &
10: else
11: Lt + define the total adversarial loss function based on Equation 4.10
12: 0141 ¢ 0, —n Vs Lp(8;0,2,y) © (8, @ Sens(z))
13: 6t+1 — clip(5t+1, 0, 1)

14: T x +ir 5 6t+1
15: Output: &

CF O R
(a) High Sensitive Location

(b) Low Sensitive Location

Input Image Human Perception Sensitivity

Figure 4.4: Illustration of the generated Human Sensitivity Map. The optimization
process aims to identify regions that are less visually susceptible to large perturbations.
During the subsequent perturbation optimization stage, updates are applied ensuring
that significant perturbations are introduced in areas identified as less sensitive to human
perception.

4.3 Optimization of Perturbation Update

During the update procedure, we aim to ensure two key aspects: Firsly, Considering the
human perception, we intend to deposit high perturbation in locations where the affinity
towards high perturbation is more and keep it restricted to locations that are deemed
sensitive from the sensitivity map developed from Section 4.2.2. Secondly, the update
rule should preserve the original pixel’s gray scale value, as the human visual system is
highly sensitive to abrupt changes in base color, which can make the perturbations more
noticeable. Instead, we encourage modifications that adjust the brightness and saturation
of the base color. This approach ensures that pixel alterations remain consistent with
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the gray scale values of the surrounding pixels, thereby enhancing visual coherence and
reducing perceptible saliency.

We start with initializing the patch with the original pixel values at the optimal location
(', j") based on Equation 4.3. We introduce a two-fold solution to integrate the human
visual system into the perturbation crafting process. First, we introduce a regularization
term to the adversarial loss to learn perturbations that are less salient to the human
eye. Second, we utilize an update rule that considers human indifference to gray-level
quantization as its basis to update the perturbation to gain visual advantage.

In particular, we utilize the following distance metric, introduced in (35), as the regular-
ization term to penalize the visual distortion of & with reference to :

1 i'+wj' +h
D(mai) = h % w ];Z, ; Sens(a:;k,l) . |-Tkl — i’kl|; (47)

where Sens(x; k, 1) is defined according to Equation 4.4. D(x, &) incorporates the sensi-
tivity of the human visual system in measuring the difference between the original and
the adversarial example.

For representational convenience the equation can be also written with the following
abstraction as follows:

1 i'+wj'+h
D(z,&) = ;—— ; ZZZ d(k, 1), (4.8)
where d(k, 1) is the distance value measured at pixel (k,[) given by the following:

d(k’,l) = Sens(a:;k,l) . ‘zkl — ikl‘y (49)

For a given pixel (k, ), the distance metric d(k, ) is defined as the product of the human
sensitivity value at that location and the magnitude of the adversarial perturbation
applied to it. This metric yields a higher value when both the perturbation magnitude
and the sensitivity of the pixel are significant, indicating a greater likelihood of the
perturbation being perceptible to the human visual system.

We argue that employing such a distance metric as a regularization term in the final loss
function will encourage producing large perturbations at locations, where the sensitivity
of the human vision is limited while suppressing the perturbations in locations that are
highly sensitive. Accordingly, we can achieve large perturbations favoring the attack
while maintaining the overall insensitivity in appearance. The central part of the loss
function remains consistent with existing attacks, comprising two cross-entropy loss
terms with respect to the target class ytars and the ground-truth class y, respectively.
Specifically, the final adversarial loss objective that we aim to minimize is given by:

[’T(év 01 €T, y) = wp ECE(i‘a Ytarg 0) — wa - ﬁCE(aAza Y; 0) + ws - D(xv i)v (410)
where wy, wy, and w3 are weight parameters that regulate the contribution for each term
and can be adjusted based on the preference of the attack.

Moreover, the loss function is accompanied by an update rule through which we aim to
achieve two main objectives. Motivated by the fact that humans are highly indifferent to
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Original Pixel Value Possible Color Variations Over Optimization

(a)

Original Pixel Value Possible Color Variations Over Optimization

(b)

Figure 4.5: Comparison of Possible Color Variations Achievable through (a) Adam
Optimization Update Rule and (b) Proposed Update Rule.

changes in brightness and saturation levels of the same base color, which is analogous
to the behavior with lower quantization levels, we update the perturbation such that
the base color of the pixel does not alter. To ensure and implement this requirement, it
is essential to apply changes of equal magnitude across all color channels of the pixel
under consideration. As a result, we opted not to employ the update rules provided by
conventional optimizers such as Adam. These standard update rules rely on gradients
computed individually for each channel, which may differ in magnitude, leading to
unequal updates across channels. Consequently, this discrepancy have the capability
to make the altered pixel more salient, as the final color on which these optimization
processes can converge can be far off from the base color, as illustrated in Figure 4.5 (a),
compared to our proposed method which results in a pixel value that still maintains the
base color of the pixel 4.5 (b). Next, we aim to maximize the utility of gradient magnitude
information of the loss function with respect to the input, while adhering to color
constraints. Such a strategy is designed to minimize the number of iterations required
for the attack as the update magnitude can be still adapt to the gradient magnitude
which is much more informed of the loss landscape. To be more specific, we propose the
following gradient update rule:

Oiar =8 —1- Vo Lr(01:0,,y) © (6t % Sens(w)), fort=0,1,....,T—1, (4.11)

where © (resp., ©) stands for element-wise multiplication (resp., division), Vs denotes
the averaged gradient of the loss function L1 over the three color channels, and 7 is the
step size. Averaging over the three channels ensures that each pixel channel is updated
by the same amount, thereby ensuring that the base color is not changed. We note that
Croce et al. (8) proposed a similar update rule, but their method does not enforce any
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color constraint. our proposed regularized loss and update rule contributes significantly
to realizing targeted goals with imperceptible adversarial patches.



Chapter 5
Experiments and Results

This chapter provides a comprehensive account of the experimental setup and design,
detailing the datasets, attack scenarios, and evaluation metrics employed to assess the
proposed method. The evaluation is conducted across multiple dimensions through
both qualitative and quantitative analyses. We First give a brief on the datasets that are
utilized in the course of this study. We then describe the experimental setup that we
consider for the proof of concept and moving ahead for the broader study, giving details
on the architectures, and other design considerations. We then present our results and
compare our method’s attack efficacy and imperceptibility with that of other baseline
methodologies. This is followed by a detailed ablation studies which help us understand
the effect of the hyperparameters on the attack along with its nature. Finally, considering
evasion of the existing defense methods as one of our central goals, we demonstrate the
attack abilities of our method against some state-of-the-art adversarial patch defense
methods.

5.1 Dataset Utilized Throughout the Work

To establish a proof of concept for our proposed method, we conducted an initial valida-
tion using the Stanford Dogs dataset (23). This dataset, a subset of ImageNet, comprises
120 classes, each corresponding to a distinct dog breed with a total of 20,580 samples.
Few samples of the Stanford Dogs dataset are presented in Figure 5.1. For our evaluation,
we carefully selected one image per class, ensuring that each chosen sample was correctly
classified by the victim model under consideration. Given our objective of extending
the validation to the broader ImageNet dataset, leveraging the Stanford Dogs dataset
allowed us to gain meaningful insights into the method’s effectiveness, while also high-
lighting the strengths and potential limitations of the design choices made throughout
development.

For the core part of our study, where we assess the efficacy of our method in terms of both
attack success and imperceptibility in a classification task, we conducted evaluations
using the ILSVRC 2012 validation set (42). This dataset comprises 1,000 classes, with 1.28
million training images, 50,000 validation images, and 10,000 test images. Few samples
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of the ILSVRC 2012 validation set are presented in Figure 5.2. For our evaluation, we
selected a subset of the validation set, ensuring that it contained a correctly classified
image per class based on the predictions of the victim model. We utilized this dataset
as the primary benchmark for a comprehensive evaluation of our method. It served as
the foundation for all comparisons against existing attack methodologies and was also
employed in experiments assessing the method’s evasive capabilities against various
defense mechanisms.

Figure 5.1: Example images from the Stanford Dogs dataset, showcasing a variety of dog
breeds included in our evaluation

Figure 5.2: Example images from the ImageNet dataset, showcasing samples from a
variety of classes included in our evaluation

In addition to the image classification task, we conducted additional evaluation for the
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face recognition task. VGG Face is a large-scale face recognition dataset developed by
at the University of Oxford by Parkhi et al. (40). It contains 2.6 million images of 2,622
identities, collected from the internet. We used a subset of the test set of this dataset,
similar to Li et al. (28). The dataset consisted of a total of 470 images across 10 classes. A
sample from each of the classes considered from the VGG Face dataset are presented in
Figure 5.3.

Figure 5.3: Example images from the VGG Face dataset, showcasing samples from a
variety of classes included in our evaluation

5.2 Experimental Setup

In this section, we highlight the experimental design that is used in this work to evaluate
the proposed method of creating imperceptible adversarial patches. We structured our
experimental studies into two distinct phases. The first phase focused on developing
a proof of concept for our proposed method, utilizing the Stanford Dogs dataset, as
discussed in Section 5.1. For each class we considered the performance for both attack
ability and imperceptibility of a samples that are correctly classified by the victim model.
For this phase, we selected ResNet-50 as the victim model, a deep convolutional neural
network with 25.6 million parameters, pretrained on ImageNet (16).

Given that the Stanford Dogs dataset is a subset of ImageNet, we employed the pre-
trained ResNet-50 model without modifying its final layers. This ensured that the model
retained its original classification capabilities, allowing us to assess our method’s effec-
tiveness without introducing additional biases from retraining or fine-tuning. This setup
provided a controlled environment for evaluating our approach before proceeding to
more extensive experiments in the subsequent phase.

After validating our initial concepts, we proceeded with a comprehensive analysis and
evaluation of our method. This phase focused on assessing both attack efficacy and
imperceptibility on a larger and more diverse dataset. As discussed in Section 5.1, we
selected a subset of the ILSVRC 2012 validation set, comprising 1,000 correctly classified
images, with one representative image from each of the 1,000 classes provided they are
correctly classified by the victim model.

To evaluate the cross-architecture performance of our method, we conducted experiments
across multiple deep learning architectures. Specifically, we considered four different
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models, spanning both convolutional neural networks (CNNs) and the more recently
developed transformer-based architectures. This selection allowed us to analyze the
generalizability and robustness of our method across fundamentally different neural
network designs, ensuring a more thorough and reliable evaluation. From the convolu-
tional neural network (CNN) family, we selected ResNet-50 and VGG16 as representative
architectures. ResNet-50, a widely used deep residual network, comprises 25.6 million
parameters (16), while VGG16, known for its deep yet uniform structure, consists of 138
million parameters (49). These models were chosen due to their strong feature extraction
capabilities and their historical significance in image classification benchmarks. From the
transformer-based architectures, we considered the Swin Transformer Tiny and the Swin
Transformer Base models. The Swin Transformer Tiny has 28 million parameters, while
the Swin Transformer Base contains 88 million parameters (34). These models leverage a
hierarchical vision transformer (ViT) approach, introducing shifted window attention
mechanisms that improve computational efficiency and performance on vision tasks.
The underlying concept of Vision Transformers (ViT) was originally introduced by Doso-
vitskiy et al. (10), demonstrating that pure transformer models can outperform CNNs on
image classification tasks when trained on large datasets. By incorporating both CNN-
based and transformer-based architectures, we aimed to evaluate the generalizability
and robustness of our method across fundamentally different network designs. This
comprehensive selection allowed us to analyze our method’s performance under diverse
feature extraction paradigms, ensuring a more rigorous and insightful assessment. It
is to note that all of our considered architectures are pretrained on ImageNet for this
particular task and for the attack scenario we considered a white-box setting where all
the model parameters are known to the attacker.

Along with evaluating our method’s performance we compared it to state-of-the-art
attack methods such as Google Patch by Brown et al. (4), LaVAN by Karmon et al. (22),
GDPA by Li et al. (28) and Masked Projected Gradient Descent (MPGD), which is an
extension of the standard PGD attack introduced by Madry et al. (36). For GDPA, we
consider a balanced scenario between attack efficacy and imperceptibility by setting their
visibility parameter « to 0.4 in our experiments. In addition, we evaluate the effectiveness
of our attack against existing defense methods designed specifically against adversarial
patch attacks. The defense methods considered includes methods described in both
Section 2.4.1 (7; 15; 31; 53) and Section 2.4.2 (13; 21).

In order to simulate a realistic scenario in a digital space we opt for the face recognition
task. Following a similar set up as Li et al. (28), we used the test set of the VGG Face
dataset, as we discussed earlier in Section 5.1. The dataset is consisting of a total of 470
images across 10 classes. We test the task across all the architecture that we considered
for the image classification task with slight alteration to fit to the task. We utilize the
pre-trained version of these model which are trained on ImageNet and re-trained on the
train set of the VGG Face dataset for the mentioned classes that contained a total of 3178
images spanning the 10 classes. The retraining procedure follows the same specifications
as used by Li et al. (28). In particular, We finetuned each of the pretrained architecture
with an Adam Optimizer with a starting learning rate of 10~ followed by a drop of 0.1
every 10 epochs. We configure the batch size to be 64. To prevent overfitting, we monitor
the validation set accuracy for hyperparameter tuning and model selection.

In all experiments, images from both tasks were resized to a standardized dimension
of 224 x 224 before applying the attack to fit to the requirements of the architectures
considered. For both ImageNet and VGG Face datasets, we iteratively updated the
adversarial patch until one of the following conditions was met:
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* The confidence score of the target class reached 0.9, indicating a high-confidence
misclassification.

* A maximum of 1,000 iterations was reached, ensuring computational efficiency.

Depending on the attack’s success, we reinitialized the step size and restarted the opti-
mization process, with a maximum of three reinitializations.

All experiments were conducted on a single NVIDIA A100 GPU with 80GB of memory,
leveraging its high computational power for efficient optimization and evaluation. We
implemented our method using PyTorch, a widely used deep learning framework,
ensuring reproducibility and ease of experimentation.

5.3 Evaluation metrics

We aim to evaluate the performance of our proposed method across two key aspects:
attack efficacy, which measures the method’s ability to successfully mislead the target
model away from the original class in the untargeted attack scenario and into the target
class in the targeted attack scenario, and imperceptibility, which ensures that the gen-
erated adversarial patch remains as unnoticeable as possible to human observers. By
analyzing these two dimensions, we seek to demonstrate both the strength of our attack
and its ability to remain visually inconspicuous.

For attack efficacy we evaluate the effectiveness of different attack methods based on
attack success rate, denoted as ASR, which characterizes the ratio of instances that can
be successfully attacked using the evaluated method. Let A be the evaluated attack, fy
be the victim model, and S be a test set of correctly classified images. The ASR of A with
respect to fy and S is defined as:

ASR(A: f3.8) = 757 3 1(Jo(8) = o). 5.1)

xeS

where |S| denotes the cardinality of S, and & is the adversarial example generated by A
for .

To comprehensively assess the imperceptibility of adversarial patches, we evaluate them
across multiple similarity metrics, ensuring a thorough understanding of their visual im-
pact. Our evaluation includes both traditional statistical methods and learned similarity
measures derived from convolutional neural networks (CNNs). Traditional statistical
methods provide a low-level pixel-wise analysis, capturing differences in color, texture,
and structural properties, while CNN-based similarity measures leverage deep feature
representations to assess perceptual similarity from a human visual perspective. By
incorporating both approaches, we obtain a more robust and holistic evaluation of im-
perceptibility, ensuring that the adversarial perturbations remain visually inconspicuous
while maintaining their attack efficacy. In an ideal scenario, an adversarial sample should
be visually identical to its corresponding benign sample, ensuring no perceptible differ-
ences to the human eye. This imperceptibility must be maintained at both a global level,
where the entire image should retain its original structure, color distribution, and overall
coherence, and at a local level, where the specific region modified by the adversarial
patch should seamlessly blend with its surroundings without introducing noticeable
artifacts or inconsistencies.
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To achieve this, we assess global similarity by ensuring that the overall composition,
texture, and spatial integrity of the image remain unchanged, preventing any distortions
that might reveal the presence of perturbations or draw unwanted attention. Simultane-
ously, local similarity is examined to verify that the adversarial patch does not disrupt the
fine-grained details, edges, or contextual consistency within the affected area. The patch
should integrate naturally with the surrounding pixels, avoiding any structural changes
to the original image as this leads to unnatural appearance that could be detected either
by human observers or automated detection mechanisms.

The traditional statistical method-oriented measures involve the Structural Similar Index
Measure (SSIM) (61),the Universal Image Quality index (UIQ) (60) and the Signal to
Reconstruction Error ratio (SRE) (26), while the learned similarity measures involves the
CLIPScore (17), and the Learned Perceptual Image Patch Similarity (LPIPS) metric (68).

SSIM by Wang et al. (61) is a perceptual metric used to assess the similarity between
two images. SSIM considers luminance, contrast, and structural similarity to provide a
more human-perceptual assessment of image quality with a global view of the sample.
The range of the metric is from —1 to 1, where 1 represent perfect similarity between the
samples, 0 means no similarity and —1 represents that they are structurally different. The
Structural Similarity Index Measure (SSIM) between two images = and y is defined as:

(242 pty + C1)(204y + C2)

SSIM (x,y) =
@) = G2t 2 1 o002 + 02 + Go)

(5.2)

where /1, and ju,, represent the mean intensities of images x and y, while o2 and o, denote
their respective variances, capturing contrast information. The term ¢, corresponds to
the covariance between x and y, reflecting structural similarity. The constants C; and Cs
are small positive values introduced to prevent division by zero and ensure numerical
stability.

UIQ by Wang et al. (60) measures the similarity between two images by evaluating
losses in correlation, luminance, and contrast. UIQ provides a more comprehensive
assessment by considering structural distortions, yielding a single index within —1 and
1. 1 means the two images are identical, 0 indicates that there is no correlation and —1
represents there is strong structural distortion among the two samples. This metric is
particularly useful in assessing the similarity between the two samples, as it provides
a more perceptually relevant evaluation of image degradation compared to traditional
pixel-wise measures.

The Universal Image Quality Index (UIQ) between two images = and y is defined as:

40 gy o 1
I = Y Y 5.3
VIR=.Y) = G o) (2 + 12) ©3)

where p,; and p, represent the mean intensities of images x and y, respectively. The terms
o2 and o, denote their respective variances, while o, represents the covariance between
z and y. This formulation ensures that UIQ simultaneously accounts for structural

correlation, contrast, and luminance degradation between the images.

SRE by Lanaras et el. (26), evaluates the quality of reconstructed images by comparing
the original signal strength to the reconstruction error. It better compares errors across
images with varying brightness, unlike Peak Signal to Noise Ratio (PSNR) which uses a
fixed peak value. It measures how accurately an image has been reconstructed after any
alteration. In our case, we attempt to measure the similarity between the adversarially
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modified image and that of the benign image. A higher SRE value indicates better
similarity between the two samples, meaning the adversarial image closely resembles
the original benign image.

The Signal to Reconstruction Error Ratio (SRE) is defined as:

2
SRE = 10log,, (M) (5.4)
n 2

where i, is the mean of the original image xz, x; represents the original image, ;
represents the reconstructed image, and » is the total number of pixels.

From the learned similarity measures we evaluate the CLIPScore and LPIPS that quan-
tify perceptual similarity using pre-trained DNNs, capturing nuanced visual features.
CLIPScore is a metric used to evaluate the similarity between two images using the
CLIP (Contrastive Language-Image Pretraining) model, that we utilize to measure the
similarity between the adversarial and the benign image. The CLIP model embeds both
images into a shared multi-dimensional space, where the similarity between them is
measured by the cosine similarity between the derived embeddings.

LPIPS by Zhang et al. (68) is a perceptual image similarity metric that measures the
distance between images based on deep neural network features rather than pixel-
wise comparisons. It computes the similarity by comparing the activations from a
pretrained convolutional network (e.g., VGG or AlexNet) at different layers. LPIPS
focuses on perceptual differences, capturing high-level structural, semantic, and textural
information, making it more aligned with human perception than traditional metrics. In
our experiments, we consider VGG as the pretrained convolutional network to measure
the LPIPS measure.

In summary, our evaluation framework rigorously assesses both the attack efficacy and
imperceptibility of the adversarial patches to ensure a comprehensive analysis of our
method’s performance. By incorporating a combination of traditional statistical similarity
measures that evaluate specific features at statistical level and learned perceptual metrics
that extract more abstract feature cues imitating human perception, we establish a
robust evaluation strategy that captures both low-level pixel differences and high-level
perceptual discrepancies.



Chapter 6
Proof of Concept: Experimental
Results on the Stanford Dogs

6.1 Experimental Details

As outlined in Section 5.2, we conducted extensive experimentation and evaluation on
the Stanford Dogs Dataset during the development phase of our proposed methodology.
Our primary objective was to utilize a dataset that would allow for rapid validation of
our approach while maintaining sufficient diversity to rigorously assess the robustness
of the method. The Stanford Dogs Dataset, consisting of various dog breeds, provided an
ideal testbed due to its rich diversity in natural image content and structural variations.

To systematically analyze the impact of the target class on the attack performance,
encompassing both attackability and evasive capabilities, we selected five distinct target
classes: iPod, Baseball, Toaster, Goldfish, and English Setter. The rationale behind this
selection was to introduce a balanced mix of both natural and artificial elements, thereby
enabling a more comprehensive evaluation of the adversarial method’s attackability in
relation to the contextual disparity between the target class and the host environment.
We kept the size of the attack region to be 84 x 84 which covered about 14% of the total
image.

Since the Stanford Dogs Dataset primarily consists of images depicting various dog
breeds, it inherently represents natural elements significantly more than man-made
environments. Consequently, our selection of target classes was designed to span both
the spectrum, ensuring that the adversarial attack’s efficacy and efficiency, which is the
ease of conducting the attack, could be tested in settings where the target class are aligned
with the natural elements of the host image and also when the target class represents
total misalignment with host environment. This deliberate selection allowed us to
investigate the influence of image semantics and contextual background on adversarial
robustness and its ease, thereby yielding deeper insights into the method’s generalization
capabilities.

32
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Since the Stanford Dogs Dataset primarily comprises images of various dog breeds,
it predominantly represents natural environments rather than man-made settings. To
ensure a comprehensive evaluation of our adversarial attack’s efficacy and efficiency,
which is the ease of conducting the attack, we strategically selected target classes that
span both ends of the spectrum—those that naturally align with the host image’s context
and those that exhibit complete semantic misalignment. This deliberate choice enabled
us to assess the impact of image semantics and contextual background on adversarial
robustness and attack feasibility, thereby offering deeper insights into the method’s
generalization capabilities across diverse visual domains. Ideally, our proposed method
should demonstrate stable attack performance, remaining invariant to the choice of the
target class. However, we hypothesize that the effectiveness of the attack is influenced by
the degree of semantic alignment between the target class and the original benign sample.
Specifically, when the target class shares greater visual or contextual similarity with the
benign sample, the adversarial perturbation is expected to be more seamlessly integrated,
making the attack both more effective and less detectable. Conversely, when the target
class exhibits significant dissimilarity from the benign sample, the attack may require
stronger perturbations, potentially affecting both its success rate and imperceptibility.
This hypothesis underscores the importance of understanding the interplay between
adversarial feasibility and semantic coherence, offering insights into the fundamental
properties that govern adversarial vulnerability in deep learning models.

X: Goldfish X: Baseball X: Ipod

Figure 6.1: Visualizations of the original images and their adversarial counterparts
produced by our method corresponding to different target class on the Stanford Dogs
Dataset. x represent the benign sample’s original class and & represent the target class
corresponding to the presented adversarial samples with the generated adversarial patch.
The smaller images at the right-bottom corner correspond to the optimal location (¢/, ).
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Table 6.1: Detailed evaluation of attack efficacy through ASR (%) and imperceptibility for
different target class within Stanford Dogs Dataset. For SSIM, UIQ, SRE and CLIP scores,
the higher (1) the better, while the lower (]) the better for LPIPS. CosSim represents
the semantic alignment between the target class and the host class. Empirical evidence
supports that target classes closer to the original classes leads to better imperceptibility

Imperceptibility metric

Vtarg CosSim  ASR(%) Scale
SSIM (1) UIQ(1) SRE(f) CLIP(f) LPIPS({)

Tpod 042 983 Local 0.93 091 28.0 86.0 0.130
Global 0.99 0.98 373 95.8 0.020
Baseball 0.47 992 Local 0.95 0.93 28.3 86.2 0.120
Global 0.99 0.99 37.8 96.0 0.019
Toaster 0.46 100 Local 0.93 091 279 86.0 0.130
Global 0.99 0.98 373 96.0 0.020
Goldfish 0.55 100 Local 091 0.90 275 83.7 0.140
Global 0.98 0.98 36.8 95.4 0.020
English Setter 072 100 Local 0.97 0.96 30.6 92.3 0.100
Global 1.00 0.99 40.0 98.0 0.016

6.2 Results and Discussions

We summarize the results demonstrating the performance of our attack methodology
in Table 6.1. The outcomes validate that our proposed method has the potential to
produce strong attack performance, as quantified by the attack success rate (ASR), while
maintaining a high level of imperceptibility, as evidenced by the imperceptibility metrics
considered. Furthermore, the performance highlights the method’s robustness, with
consistent stability observed across the different target classes, reflected in an attack
success rate of (99.5+0.67) %. To illustrate the imperceptibility of the adversarial patches
generated by our method, we visualize the final adversarial samples & corresponding to
each class and compare them with the original benign sample z in the Figure 6.1. The
visual results further solidifies the effectiveness of our approach in achieving imper-
ceptibility while being able to achieve high attack success rates in the targeted attack
scenario.

Based on the conditions outlined in Section 5.2, we evaluated all the successful attack
instances for each target class. We assessed the average target class prediction confidence
for the adversarial samples generated. The results for these evaluations are as follows:
an average prediction confidence of 90.3% for the target class “English Setter”, 89.4%
for “Toaster”, 87.6% for “Goldfish”, 83.2% for “iPod”, and 86.0% for “Baseball”. These
results demonstrate that our methodology consistently achieves high confidence levels
in its attacks across a wide range of target classes, further underscoring the strength and
versatility of our approach.

In addition to the primary results, we conducted a supplementary experiment to further
assess the semantic alignment between the target class samples and the host samples.
Specifically, we selected five samples from each of the five target classes discussed
earlier and computed the similarity of their CLIP embeddings with those of 20 randomly
selected samples for each of the 10 randomly chosen classes within the Stanford Dogs
dataset.
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As hypothesized, although the attack performance remained stable across different target
classes, we observed a notable correlation between the performance of the attack and the
semantic alignment between the target and host classes. This relationship is empirically
supported by the findings: for example, the cosine similarity value between the CLIP
embeddings of the “English Setter” target class, which is a class within the 120 classes
of Stanford Dogs dataset, and the 20 randomly chosen classes was calculated to be 0.72.
To ensure the validity of the results, it was confirmed that the 20 classes considered did
not include the “English Setter”, as its inclusion could lead to overestimated similarity
values. Notably, the “English Setter” class exhibited superior attack performance, as
indicated by its higher attack success rate and lower imperceptibility, compared to
other target classes like “iPod”, which had a cosine similarity value of only 0.42. This
comparison underscores the influence of semantic alignment on the efficacy of the attack,
suggesting that target classes with higher alignment to the host classes yield better
performance in terms of attack success and imperceptibility. The detailed alignment
scores are summarized in Table 6.1.



Chapter 7
Extensive Evaluation and Comparison:
Experimental Results on ImageNet
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Figure 7.1: Visualizations of the original images and their adversarial counterparts
produced by our method corresponding to the target class on the ImageNet Dataset
with VGG16 as the victim model. = represent the benign sample’s original class and 2
represent the adversarial samples with the generated adversarial patch corresponding to
the target class. The smaller images at the right-bottom corner correspond to the optimal
location (7', j').
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Table 7.1: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with VGG16 as the victim model on the ImageNet dataset. For SSIM,
UIQ, SRE and CLIP scores, the higher (1) the better, while the lower ({) the better for
LIPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM (1) UIQ (1) SRE(t) CLIP(T) LPIPS(J)

Google Patch 100 Local 0.002 0.000 11.93 32.50 0.760
Global 0.830 0.820 18.73 73.10 0.190
LaVAN 9.6 Local 0.002 0.000 11.13 33.20 0.790
Global 0.820 0.810 20.30 76.32 0.230
GDPA 892 Local 0.310 0.300 19.90 56.25 0.610
Global 0.890 0.880 28.00 84.00 0.130
MPGD (Io., ¢ = 16/255) 9.5 Local 0.810 0.800 26.44 73.91 0.320
Global 0.940 0.920 32.80 94.00 0.090
Ours 99.1 Local 0.900 0.860 28.94 72.70 0.230
Global 0.985 0.960 36.42 95.10 0.060

7.1 Experimental Details

After successfully validating the effectiveness of our methodology on the Stanford Dogs
dataset, we extended our evaluation to a more diverse and comprehensive dataset to gain
deeper insights into its performance across a broader range of scenarios. For this purpose,
we selected ImageNet (42), a large-scale dataset known for its extensive diversity in
object categories, varying backgrounds, and complex real-world variations. This dataset
provides a more challenging benchmark, allowing us to assess the generalizability and
robustness of our method beyond a domain-specific setting like Stanford Dogs.

In addition to evaluating our approach, we conducted a comparative analysis against
existing state-of-the-art adversarial patch attacks, which serve as baseline methods for
our study. Specifically, we compared our method with Google Patch by Brown et al.
(4), LaVAN by Karmon et al. (22), GDPA by Li et al. (28), and MPGD. For MPGD,
we determined the patch placement location using the optimal placement strategy
outlined in our proposed methodology to ensure a fair and effective comparison. The
perturbation budget was constrained using an /., norm bound of ¢ = 16/255 . This
setting provided an optimal balance between attack effectiveness and imperceptibility.
The comparison is based on the two aspects of the attack as discussed earlier: Attack
ability and imperceptibility.

To maintain consistency with our previous experiments on the Stanford Dogs dataset,
we set the adversarial patch size to 84 x 84 pixels, covering approximately 14% of the
total image area. This ensured that differences in attack performance were primarily
attributed to methodological variations rather than differences in patch size or placement
strategy. We conducted the attack in a white-box setting for each of the four architectures
discussed in Section 5.2. Going with the existing literature we considered "Toaster" as
the target class for the attack.
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7.2 Results and Discussions

Table 7.1 presents a comprehensive evaluation of our proposed method, assessing its
effectiveness in terms of both attack success rate (ASR) and patch imperceptibility, using
VGG16 as the victim model. Additionally, the table provides a comparative analysis
against the baseline adversarial patch methods considered in this study. Our proposed
approach demonstrates a high attack success rate, achieving an average ASR of 99.1%
across the host classes with a average target class prediction confidence of 79%. This
performance is competitive with the baseline methods, with only Google Patch sur-
passing it by achieving a perfect 100% ASR. In terms of imperceptibility, however, our
proposed method achieved the best performance, as evidenced by the imperceptibility
metrics considered. Notably, methods that prioritize imperceptibility, such as MPGD and
GDPA (with an alpha value of 0.4), exhibit a considerable decline in attack performance.
Through empirical analysis, we attribute this reduction to two primary factors: (i) the
inherently restricted nature of perturbations in MPGD, which limits the attack’s effec-
tiveness, and (ii) the diminished influence of adversarial perturbations in GDPA, where
the alpha blending technique reduces the perturbation’s relative contribution to the orig-
inal pixel values. These findings underscore the trade-off between imperceptibility and
attack success in the existing adversarial patch designs. Some of the adversarial samples
generated in this study are shown in Figure 7.1, providing a visual representation of the
imperceptibility of the adversarial patches produced by our method.
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Toaster(90%) Toaster(90%) Toaster(90%) Toaster(91%)

Figure 7.2: Visualizations of the original images and their adversarial counterparts
produced by our method corresponding to the target class on the ImageNet Dataset with
ResNet-50 as the victim model. z represent the benign sample’s original class and &
represent the adversarial samples with the generated adversarial patch corresponding to
the target class. The smaller images at the right-bottom corner correspond to the optimal
location (7', j').

Table 7.2 presents the performance of the attack for the second set of experiments which
utilized the ResNet-50 as the victim model. Our method achieves a 99.5% average attack
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Table 7.2: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with ResNet-50 as the victim model on the ImageNet dataset. For SSIM,
UIQ, SRE and CLIP scores, the higher (1) the better, while the lower ({) the better for
LIPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM (1) UIQ (1) SRE(t) CLIP(T) LPIPS(J)

Google Patch 99.1 Local 0.010 0.000 14.20 33.00 0.740
Global 0.820 0.810 22.90 74.10 0.180
LaVAN 100 Local 0.010 0.000 14.20 33.30 0.780
Global 0.820 0.810 23.40 76.10 0.180
GDPA 93.7 Local 0.350 0.330 19.80 65.20 0.570
Global 0.920 0.910 28.40 87.10 0.090
MPGD (Io., ¢ = 16/255) 9738 Local 0.790 0.780 25.30 76.20 0.240
Global 0.950 0.930 33.60 93.30 0.050
Ours 99.5 Local 0.940 0.910 28.34 84.54 0.120
Global 0.990 0.970 37.23 96.52 0.020

success rate across host classes, with an average target class prediction confidence of
87.6%. This outperforms all the state-of-the-art baseline approaches considered, with
LaVAN being the only method to outperform it by reaching a 100% attack success rate.
For imperceptibility, similar to the performance on VGG16, our proposed method out-
performed every other method, evident by the imperceptibility values obtained. The
observation previously with respect to methods prioritizing imperceptibility to some
level and their impact on attack success rate remains consistent. Figure 8.3 presents a
selection of adversarial samples generated in this study, illustrating the high impercepti-
bility of the adversarial patches crafted using our method.

The performance with the Swin Transformer Tiny as the victim model are summarized
in Table 7.3. We achieve an average attack success rate 99.6% with an average target class
prediction confidence of 87.0% which is comparable to the other baselines considered.
Google Patch achieved the best attack performance with a 100% attack success rate. How-
ever as far as imperceptibility metrics are concerned, consistent with observations from
VGG16 and ResNet-50 our method was unchallenged. The impact of imperceptibility-
focused methods on attack success rate remains consistent with previous observations.
Figure 7.3 showcases adversarial samples from this portion, highlighting the strong
imperceptibility of the patches generated by our method.

With the Swin Transformer Base as the victim model we summarize our results in Table
7.4. A significant variation in terms of attack success rate was observed for MPGD among
other methods where the performance dropped to 70.5% in comparison to what previ-
ously was observed for other victim models. Our method achieves an average attack
success rate of 99.6% and an average target class prediction confidence of 83.4%, demon-
strating performance comparable or better than the baseline methods considered.LaVAN
demonstrated the highest attack performance, achieving a 100% ASR. However, in terms
of imperceptibility metrics, our method outperformed all others, aligning with previous
observations. The trade-off between imperceptibility and attack success rate for other
imperceptibility prioritizing methods remained consistent across evaluations. Figure 7.4
presents adversarial samples from this set of experiments, emphasizing the subtlety of
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the generated patches.

With the Swin Transformer Base as the victim model we summarize our results in Table
7.4. A significant variation in terms of attack success rate was observed for MPGD among
other methods where the performance dropped to 70.5% in comparison to what previ-
ously was observed for other victim models. Our method achieves an average attack
success rate of 99.6% and an average target class prediction confidence of 83.4%, demon-
strating performance comparable or better than the baseline methods considered.LaVAN
demonstrated the highest attack performance, achieving a 100% ASR. However, in terms
of imperceptibility metrics, our method outperformed all others, aligning with previous
observations. The trade-off between imperceptibility and attack success rate for other
imperceptibility prioritizing methods remained consistent across evaluations. Figure 7.4
presents adversarial samples from this set of experiments, emphasizing the subtlety of
the generated patches.

Book Jacket

Toaster(90%) Toaster(90%) Toaster(90%) Toaster(91%)

Figure 7.3: Visualizations of the original images and their adversarial counterparts
produced by our method corresponding to the target class on the ImageNet Dataset
with Swin Transformer Tiny as the victim model. x represent the benign sample’s
original class and Z represent the adversarial samples with the generated adversarial
patch corresponding to the target class. The smaller images at the right-bottom corner
correspond to the optimal location (i’, j').
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Table 7.3: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with Swin Transformer Tiny as the victim model on the ImageNet
dataset. For SSIM, UIQ, SRE and CLIP scores, the higher (1) the better, while the lower
(J) the better for LIPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM (1) UIQ (1) SRE(t) CLIP(T) LPIPS(J)

Google Patch 99.8 Local 0.002 0.000 11.80 32.80 0.770
Global 0.830 0.820 18.94 73.90 0.150
LaVAN 99.7 Local 0.005 0.000 14.13 33.10 0.780
Global 0.820 0.810 23.30 76.32 0.170
GDPA 837 Local 0.390 0.360 20.20 63.65 0.540
Global 0.900 0.890 28.21 85.75 0.100
MPGD (Io., ¢ = 16/255) 98.8 Local 0.800 0.790 25.50 80.54 0.190
Global 0.940 0.920 33.11 95.80 0.050
Ours 99.6 Local 0.980 0.940 31.74 90.41 0.060
Global 0.996 0.980 40.67 98.61 0.008
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Figure 7.4: Visualizations of the original images and their adversarial counterparts
produced by our method corresponding to the target class on the ImageNet Dataset
with Swin Transformer Base as the victim model. z represent the benign sample’s
original class and & represent the adversarial samples with the generated adversarial
patch corresponding to the target class. The smaller images at the right-bottom corner
correspond to the optimal location (¢’, j’).

Across all the four victim models— VGG16, ResNet-50, Swin Transformer Tiny, and
Swin Transformer Base— our proposed method consistently demonstrated high attack
success rates and superior imperceptibility. The attack success rate remained above 99%
across the models, with slight variations in the average target class prediction confidence.
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Table 7.4: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with Swin Transformer Base as the victim model on the ImageNet
dataset. For SSIM, UIQ, SRE and CLIP scores, the higher (1) the better, while the lower
(J) the better for LIPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM (1) UIQ (1) SRE(t) CLIP(T) LPIPS(J)

Google Patch 979 Local 0.003 0.000 10.74 32.90 0.770
Global 0.830 0.820 17.61 73.20 0.170
LaVAN 100 Local 0.004 0.000 13.10 33.19 0.780
Global 0.820 0.810 23.30 76.35 0.180
GDPA 85.1 Local 0.360 0.345 20.40 61.25 0.540
Global 0.880 0.870 28.00 85.10 0.110
MPGD (Io., ¢ = 16/255) 705 Local 0.800 0.800 25.30 74.30 0.200
Global 0.940 0.920 33.00 92.10 0.050
Ours 99.4 Local 0.970 0.910 31.30 89.33 0.070
Global 0.994 0.970 40.10 98.43 0.010

From the performance metrics we observe that ease of attack is significantly limited for
architectures like VGG16 and ResNet-50 where it requires more perturbation updates
resulting in reduced performance in imperceptibility while the opposite was observed
for recently developed models like Swin Transformer Tiny and Swin Transformer Base.
We attribute this observation into three key factors:

Network Architecture and Local Receptive Fields:

Convolutional neural networks (CNNs) like VGG16 and ResNet-50 rely on local receptive
fields and strong inductive biases. This localized processing makes them more resistant
to small, subtle perturbations, requiring stronger and more noticeable modifications to
deceive them. As a result, achieving a high attack success rate on these models demands
more aggressive perturbation updates, which negatively impacts imperceptibility.

Feature Processing in Transformer-Based Models

Transformer-based models like Swin Transformers leverage hierarchical feature pro-
cessing and self-attention mechanisms. Unlike CNNs, they do not rely on fixed spatial
hierarchies, allowing them to capture global dependencies more effectively. This makes
them more susceptible to adversarial perturbations, as subtle changes in one region of
the image can influence feature representations across the entire model.

Perturbation Propagation and Effectiveness

Perturbation propagation differs significantly between these architectures. CNNs primar-
ily process features locally, meaning adversarial noise remains concentrated in specific
regions, often requiring stronger perturbations to be effective. In contrast, Swin Trans-
formers’ self-attention mechanism enables perturbations to diffuse across multiple spatial
locations, making them more efficient at fooling the model with fewer updates. This
results in better imperceptibility while maintaining high attack success rates.
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7.3 Evading State-Of-The-Art Defense Methods

We evaluated our attack method against state-of-the-art defense mechanisms specifically
designed to counter adversarial patch attacks. As outlined in Section ??, we consid-
ered two primary categories of defense strategies: approaches that focus on detecting
adversarial patches by identifying high-saliency regions: Jedi by Tarchoun et al. (53),
Jujutsu by Chen et al. (7), SAC by Liu et al. (31), and DW by Hayes(15) and methods
that employ adversarial purification techniques to mitigate the impact of adversarial
perturbations: DIFFENDER by Kang et al. (21), and DiffPAD by Fu et al. (13). Operating
under a white-box setting, we assume that the attacker has access to the underlying
model parameters to launch the patch attack. We focus on ImageNet in this task and
employ ResNet50 as the target model. Since patch defenses typically include a patch
detection module as an initial step, we generate the adversarial samples as a priori on the
target model for the target class "toaster". That essentially means, the perturbations were
made only considering the target model and not the defense block in the pipeline. We
define an attack as successful if the adversarial sample, after going through the defense
module, induces the target model to correctly classify it as the target class or as defined
by the defense method. Table 7.6 demonstrates the effectiveness of different patch attacks
in the presence of defenses. In all the scenarios, our generated adversarial samples can
bypass the defense module effectively with high attack success rates. In stark contrast,
all the other attacks are ineffective against at least one of the evaluated defenses. For
instance, our method can achieve 100% attack success rate against SAC, whereas the best
performance attained by all the remaining patch attacks is as low as 11.6%.

A common observation across all defense methods was that, due to the lack of saliency
in the adversarial patch, some methods mistakenly identified non-adversarial features of
the image as the primary region of interest. This issue was prevalent in both categories of
defense strategies discussed earlier—those that focus on high-saliency regions for patch
detection and those that employ adversarial purification techniques.

This phenomenon highlights a fundamental limitation of existing defense mechanisms:
they lack a deeper understanding of the intrinsic properties of adversarial patches and
the underlying reasons for their effectiveness in inducing misclassification. Instead of
comprehending the adversarial perturbation’s role in manipulating the model’s decision
boundaries, these defenses rely on heuristic cues such as the presence of highly textured
regions or abrupt visual artifacts. This limitation is evident in both image-processing-
based defense techniques, which, for instance, searches for high variance locations
to counter adversarial effects, and learning-based approaches, which train models to
recognize and mitigate adversarial patterns. In both cases, the reliance on superficial
visual features rather than a deeper semantic understanding of adversarial behavior
limits the robustness of these defenses. Consequently, adversarial patches that effectively
blend into natural image features remain undetected, reducing the overall efficacy of
these defense mechanisms.

7.4 Adaptation into the Real-World Scenarios

Although our central goal is to generate a general method for creating imperceptible
patches, which is validated by the results we obtained, we also evaluated our method on
more realistic scenarios.
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Table 7.5: Comparisons of ASR (%) between different attack methods against various
patch defenses.

Method Jedi Jujutsu SAC DW DIFFender DiffPAD
Google Patch 46.8 0.0 2.7 1.4 35.5 33.2
LAVAN 50.9 0.3 3.8 54.0 53.2 39.8
GDPA 67.1 94.0 7.4 1.3 57.0 52.1
MPGD (I, € = 16/255)  68.2 95.1 11.6  79.0 95.7 92.1
Ours 78.6 99.8 100 89.8 99.8 98.6

Table 7.6: Transferability represented by ASR(%) on ImageNet. The first row represents
the substitute model and the first column represents the target models.

ResNet-50 VGG16 Swin T(Tiny) Swin T(Base)

ResNet-50 100 46.2 43.4 43.6
VGG16 63.0 100 58.2 56.8
Swin T(Tiny) 16.7 15.3 100 211
Swin T(Base) 13.2 9.90 12.7 100
ResNet-18 60.7 55.9 53.2 55.4
ResNet-34 494 44.8 45.2 43.4
VGGI11 70.1 724 68.4 68.2
VGG13 65.5 70.5 61.6 63.1

7.4.1 Evaluation of Attack Transferability in a Black-Box Setting

In this section, we assess the transferability of adversarial perturbations across different
neural network architectures in a black-box setting. Specifically, we examine whether
adversarial patches crafted for one model can effectively mislead other architectures
without direct access to their parameters. We considered the untargeted setting for this
set of experiments.

To conduct this evaluation, we first analyze the transferability within the four primary
architectures used for attack generation: ResNet-50, VGG-16, Swin-Tiny, and Swin-Base.
We then extend our evaluation to additional related architectures—ResNet-18, ResNet-34,
VGG-11, and VGG-13—to measure how well perturbations generalize across similar
model families. It is important to note that these additional models are used solely for
evaluation purposes; adversarial perturbations were not explicitly crafted for them.The
experimental setup remains consistent with previous evaluations, ensuring a fair com-
parison. Specifically, we maintain a fixed set of 1,000 test samples across all experiments.
Our results indicate a reasonable degree of transferability, with VGG-11 and VGG-13
exhibiting the highest susceptibility to adversarial perturbations generated by different
training setups. This observation suggests that certain model architectures may be in-
herently more vulnerable to transferred attacks. Although our study does not employ
a dedicated methodology tailored for maximizing transferability, the observed results
provide valuable insights into the potential of adversarial patch attacks to generalize
across architectures.
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7.4.2 Evaluation of Physical-World Attack Using Proposed Method

To assess the real-world applicability of our proposed attack method, we extended our
experiments to a physical attack scenario. Given that printability constraints play a
crucial role in transferring adversarial patches from a digital to a physical setting, we
adopted a reference sticker-based approach similar to the methodology introduced by
Liu et al. (30). Specifically, we curated a dataset named SaarSticker, comprising 100
images of stickers commonly found near traffic signals in Saarbriicken. A subset of these
images was used as reference backgrounds onto which perturbations were optimized.
Representative samples from this dataset are shown in Figure 7.6.

For training these patches, we largely adhered to the experimental configuration used
in our instance-based untargeted attack scenario, with minor modifications to better
reflect real-world physical conditions. To enhance the robustness of our patches against
real-world variations, we incorporated a set of standard augmentation techniques. These
included geometric transformations such as random cropping, flipping, rotation, and
perspective distortion, as well as color adjustments involving changes in brightness,
contrast, saturation, and hue, along with grayscale conversions. These augmentations
were applied to the input images after the adversarial patch was overlaid, mimicking the
variations encountered in real-world settings such as lighting conditions, viewing angles,
and environmental disturbances.

For our evaluation, we selected the Swin Transformer Tiny as the victim model in a
white-box setting. Once the attack was successfully crafted in the digital environment,
we printed ten randomly chosen benign images alongside their corresponding adversar-
ial patches. The printed patches were then physically placed on the respective images,
and we manually assessed whether the attack objective was met. Our evaluation demon-
strated a satisfactory physical attack success rate of 60%, confirming the feasibility of our
method in real-world scenarios. Figure ?? illustrates the benign sample, the adversarial
sample in digital space and the adversarial sample in the physical space.
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Figure 7.5: Examples from the proposed SaarStricker dataset showcasing a variety of
stickers present across the traffic signals of Saarbriicken city.
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xdig

Figure 7.6: x represent the benign sample, £4;4 represent the adversarial sample in the
digital space and &, represents the printed adversarial sample.



Chapter 8
Extensive Evaluation and Comparison:
Experimental Results on the VGG Face

8.1 Experimental Details

To evaluate the proposed method in a real-world application, we conducted experiments
on a face recognition task. Specifically, we utilized a subset of the VGG Face dataset
comprising 10 classes, each corresponding to a distinct celebrity: "A. J. Buckley", "A. R.
Rahman", "Aamir Khan", "Aaron Staton", "Aaron Tveit", "Aaron Yoo", "Abbie Cornish",
"Abel Ferrara", "Abigail Breslin", and "Abigail Spencer". Like the previous two datasets,
we set the adversarial patch size to 84 x 84 pixels, covering approximately 14% of the
total image area. The comparison to the baseline settings and their configurations are
kept same as described in the Section 7.

Our experimental setup consisted of three sets of trials, with each set comprising four
attack runs against four victim models. The primary variable across these sets was the
designated target class. The target classes chosen for the three sets of experiments were
"A.J. Buckley", "Aamir Khan", and "Aaron Staton", which were randomly selected at the
outset of the study.

8.2 Results and Discussions

Using VGG16 as the victim model, we achieved a comparable attack success rate across
all target classes. Notably, we obtained a 100% attack success rate for the class "A. J.
Buckley", which is either equivalent to or superior to existing methods. This was followed
by a 98.8% success rate for "Aamir Khan", which, while not outperforming all other
methods, remains on par with them. Additionally, for "Aaron Staton", we achieved a
99.53% success rate, which is comparable to the performance of LaVAN and Google
Patch, while surpassing other considered methods. In terms of imperceptibility, our
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approach achieves state-of-the-art performance across all evaluated methods.

With ResNet-50 as the target model, following the previous trends our method demon-
strated consistently high attack success rates across all classes. We achieved 98.8%
success on "A. ]. Buckley", which performed comparably with existing techniques. An
attack success rate of 93.0% in "Aamir Khan" was outperformed by other state-of-the-art
competitive methods except for MPGD which scored 70.74%, and same was observed
for "Aaron Staton", where we reached 91.80%, exceeded by LaVAN and GDPA while
surpassing others. Google Patch observed a drop to 80.3% with MPGD marking the
lowest attack success rate at 52.50%. Compared to other approaches our approach excels
in imperceptibility, setting a new benchmark across all evaluated methods.

When using Swin Transformer Tiny as the victim model, our attack achieved impressive
results as we recorded a 99.3% success rate for "A. J. Buckley", maintaining superiority
to other methods only getting surpassed by LaVAN. For "Aamir Khan", we similarly at-
tained 99.3%, being on par with the performance of other leading techniques. In the case
of "Aaron Staton", our method reached 98.6% which again was comparable to the other
existing approaches while surpassing the imperceptibility prioritizing approaches. Fur-
thermore, our method continued to set the standard for imperceptibility, outperforming
all other evaluated methods.

VGG16 ResNet-50 Swin Transformer Tiny  Swin Transformer Base
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Figure 8.1: Visualizations of the original images and their adversarial counterparts pro-
duced by our method corresponding to the target class "A. J. Buckley" on the VGG Face
Dataset. = represent the benign sample’s original class and & represent the adversarial
samples with the generated adversarial patch corresponding to the target class. The
smaller images at the right-bottom corner correspond to the optimal location (', j').
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Figure 8.2: Visualizations of the original images and their adversarial counterparts
produced by our method corresponding to the target class "Aamir Khan" on the VGG Face
Dataset. = represent the benign sample’s original class and & represent the adversarial
samples with the generated adversarial patch corresponding to the target class. The
smaller images at the right-bottom corner correspond to the optimal location (', j').
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Figure 8.3: Visualizations of the original images and their adversarial counterparts pro-
duced by our method corresponding to the target class "Aaron Staton" on the VGG Face
Dataset. = represent the benign sample’s original class and & represent the adversarial
samples with the generated adversarial patch corresponding to the target class. The
smaller images at the right-bottom corner correspond to the optimal location (', 5').
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Table 8.1: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with VGG16 as the victim model on the VGG Face dataset for the Target
class "A. J. Buckley". For SSIM, UIQ, SRE and CLIP scores, the higher (1) the better,
while the lower ({) the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM (1) UIQ (1) SRE(t) CLIP(T) LPIPS(J)

Google Patch 100 Local 0.000 0.000 11.95 36.82 0.890
Global 0.812 0.820 19.46 68.22 0.270
LaVAN 100 Local 0.006 0.000 15.85 36.55 0.865
Global 0.820 0.825 24.18 71.84 0.220
GDPA 96.12 Local 0.240 0.220 21.00 57.96 0.660
Global 0.870 0.865 29.00 75.66 0.151
MPGD (Io., ¢ = 16/255) 88.9 Local 0.620 0.533 28.30 65.30 0.400
Global 0.960 0.935 36.70 86.70 0.087
Ours 100 Local 0.930 0.880 31.81 66.50 0.207
Global 0.990 0.980 40.11 88.57 0.039

Employing Swin Transformer Base as the victim model, our attack demonstrated con-
sistently strong performance. We achieved 99.0% success on "A. J. Buckley", surpassing
most of the existing methods except for LaVAN. For "Aamir Khan", our approach ob-
served a attack success rate of 97.0%, remaining competitive with leading techniques.
Similarly, we obtained 98.6% success on Aaron Staton, exceeding most baselines except
for LaVAN. Following previous observations, even for this set of experiments, our attack
set a new benchmark in imperceptibility, outperforming all evaluated approaches.

Consistent with observations from ImageNet, existing methods that prioritize imper-
ceptibility often experience a trade-off, where improved invisibility comes at the cost of
reduced attack success rates. However, our method successfully maintains a balance in
this trade-off, maintaining high imperceptibility while achieving strong and stable attack
success rates. The stability in terms of attackability also further validates our method.

Similar to the set of experiments conducted on ImageNet where we observed an ease
of attack on transformer-based architectures compared to CNN-based architectures, the
same characteristics were observed. The attack success rates for the transformer based
architectures were elevated compared to the later, where on an average the attack success
rates for Swin Transformer Tiny and Swin Transformer Base was 98.63% comapred to
the average value of 97% attack success rate for VGG16 and ResNet-50 together, with
ResNet-50 being the most robust architecture.
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Table 8.2: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with VGG16 as the victim model on the VGG Face dataset for the Target
class "Aamir Khan". For SSIM, UIQ, SRE and CLIP scores, the higher (1) the better, while
the lower (]) the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM(1) UIQ() SRE() CLIP() LPIPS(})

Google Patch 99.9 Local 0.000 0.000 11.76 36.43 0.860
Global 0.810 0.820 19.36 68.22 0.270
LaVAN 995 Local 0.005 0.000 15.64 36.52 0.850
Global 0.820 0.825 24.06 71.56 0.220
GDPA 99.50 Local 0.220 0.190 21.46 55.50 0.685
Global 0.850 0.840 55.50 63.41 0.190
MPGD (lo., ¢ = 16/255) 86.85 Local 0.650 0.550 27.80 65.20 0.420
Global 0.950 0.930 36.10 86.60 0.090
Ours 98.8 Local 0.924 0.870 31.94 68.24 0.200
Global 0.990 0.980 40.08 88.70 0.039

Table 8.3: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with VGG16 as the victim model on the VGG Face dataset for the Target
class "Aaron Staton". For SSIM, UIQ, SRE and CLIP scores, the higher (1) the better,
while the lower ({) the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM() UIQ(?) SRE(1) CLIP(1) LPIPS (})

Google Patch 100 Local 0.000 0.000 10.76 36.65 0.860
Global 0.810 0.820 18.27 68.70 0.290
LaVAN 100 Local 0.003 0.000 11.89 36.45 0.870
Global 0.820 0.824 20.30 71.67 0.260
GDPA 91.50 Local 0.476 0.465 22.85 60.48 0.53
Global 0.900 0.890 29.45 76.00 0.125
MPGD (loo, € = 16/255) 84.95 Local 0.680 0.564 27.30 65.10 0.440
Global 0.940 0.924 35.88 85.10 0.094
Local 0.904 0.850 31.40 65.80 0.217

Ours 99.53

Global 0.985 0.980 39.61 87.72 0.042
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Table 8.4: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with ResNet-50 as the victim model on the VGG Face dataset for the
Target class "A. J. Buckley". For SSIM, UIQ, SRE and CLIP scores, the higher (1) the
better, while the lower () the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM(1) UIQ() SRE() CLIP() LPIPS(})

Google Patch 98.0 Local 0.010 0.000 17.52 38.81 0.730
Global 0.830 0.820 24.25 63.13 0.210
LaVAN 100 Local 0.007 0.000 16.80 36.81 0.840
Global 0.840 0.826 25.12 71.64 0.200
GDPA 99.5 Local 0.310 0.250 22.00 53.00 0.660
Global 0.880 0.860 29.00 59.00 0.170
MPGD (lo., ¢ = 16/255) 781 Local 0.620 0.560 26.99 61.78 0.380
Global 0.950 0.930 35.56 85.42 0.080
Ours 98.8 Local 0.920 0.880 32.11 69.40 0.170
Global 0.990 0.980 40.66 90.55 0.030

Table 8.5: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with ResNet-50 as the victim model on the VGG Face dataset for the
Target class "Aamir Khan". For SSIM, UIQ, SRE and CLIP scores, the higher (1) the better,
while the lower ({) the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM (1) UIQ() SRE(1) CLIP(f) LPIPS(})

Google Patch 995 Local 0.001 0.000 16.47 38.80 0.800
Global 0.830 0.820 21.89 63.13 0.270
LaVAN 100 Local 0.007 0.000 16.89 36.82 0.830
Global 0.840 0.826 25.30 71.51 0.210
GDPA 99.70 Local 0.280 0.230 21.99 56.73 0.600
Global 0.870 0.850 56.73 59.32 0.200
MPGD (loo, € = 16/255) 70.74 Local 0.610 0.550 26.60 59.87 0.390
Global 0.940 0.930 35.30 84.63 0.080
Local 0.890 0.830 30.88 65.75 0.226

Ours 93.0

Global 0.980 0.970 39.37 87.30 0.040




53

Table 8.6: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with ResNet-50 as the victim model on the VGG Face dataset for the
Target class "Aaron Staton". For SSIM, UIQ, SRE and CLIP scores, the higher (1) the
better, while the lower () the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM(1) UIQ() SRE() CLIP() LPIPS(})

Google Patch 80.3 Local 0.010 0.000 17.52 38.81 0.730
Global 0.830 0.820 24.25 63.13 0.210
LaVAN 97.0 Local 0.010 0.000 17.45 41.54 0.750
Global 0.830 0.820 22.32 62.68 0.240
GDPA 98.00 Local 0.330 0.280 22.10 55.68 0.60
Global 0.880 0.850 29.12 57.54 0.200
MPGD (lo., ¢ = 16/255) 5250 Local 0.610 0.550 26.83 60.25 0.380
Global 0.940 0.930 35.25 83.42 0.080
Ours 91.80 Local 0.890 0.840 30.89 65.70 0.216
Global 0.980 0.970 39.33 88.32 0.040

Table 8.7: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with Swin Transformer Tiny as the victim model on the VGG Face
dataset for the Target class "A. J. Buckley". For SSIM, UIQ, SRE and CLIP scores, the
higher (1) the better, while the lower (|) the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM() UIQ(?) SRE(1) CLIP(1) LPIPS (})

Google Patch 98.9 Local 0.040 0.000 10.12 36.10 0.820
Global 0.830 0.830 16.87 66.88 0.260
LaVAN 100 Local 0.007 0.000 16.49 36.50 0.850
Global 0.840 0.825 24.75 71.87 0.210
GDPA 9.9 Local 0.330 0.270 21.85 62.10 0.570
Global 0.880 0.870 29.30 71.76 0.140
MPGD (loo, € = 16/255) 955 Local 0.630 0.540 27.65 62.48 0.380
Global 0.950 0.930 35.72 86.66 0.070
Local 0.860 0.800 29.22 63.28 0.275

Ours 99.3

Global 0.980 0.970 38.00 87.83 0.048
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Table 8.8: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with Swin Transformer Tiny as the victim model on the VGG Face
dataset for the Target class "Aamir Khan". For SSIM, UIQ, SRE and CLIP scores, the
higher (1) the better, while the lower (|) the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM(1) UIQ() SRE() CLIP() LPIPS(})

Google Patch 99.2 Local 0.000 0.000 10.11 37.23 0.780
Global 0.830 0.820 17.22 67.50 0.230
LaVAN 100 Local 0.006 0.000 16.31 36.57 0.850
Global 0.840 0.825 24.71 71.73 0.210
GDPA 100 Local 0.340 0.300 19.85 60.84 0.600
Global 0.910 0.910 29.82 80.01 0.100
MPGD (lo., ¢ = 16/255) 94.87 Local 0.640 0.550 27.68 62.69 0.370
Global 0.950 0.930 35.80 86.97 0.070
Ours 99.3 Local 0.870 0.820 29.80 63.00 0.240
Global 0.980 0.970 38.60 88.20 0.043

Table 8.9: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with Swin Transformer Tiny as the victim model on the VGG Face
dataset for the Target class "Aaron Staton". For SSIM, UIQ, SRE and CLIP scores, the
higher (1) the better, while the lower (|) the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM() UIQ(?) SRE(1) CLIP(1) LPIPS (})

Google Patch 993 Local 0.000 0.000 12.60 38.84 0.820
Global 0.830 0.820 17.48 63.13 0.290
LaVAN 100 Local 0.007 0.000 16.45 36.67 0.850
Global 0.840 0.825 24.82 72.06 0.210
GDPA 904 Local 0.310 0.260 20.19 54.86 0.65
Global 0.860 0.840 27.21 60.54 0.220
MPGD (loo, € = 16/255) 96.2 Local 0.640 0.550 27.76 61.90 0.360
Global 0.950 0.930 35.85 87.30 0.070
Local 0.860 0.800 29.64 62.00 0.260

Ours 98.60

Global 0.980 0.970 38.34 87.90 0.046
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Table 8.10: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with Swin Transformer Base as the victim model on the VGG Face
dataset for the Target class "A. J. Buckley". For SSIM, UIQ, SRE and CLIP scores, the
higher (1) the better, while the lower (|) the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM(1) UIQ() SRE() CLIP() LPIPS(})

Google Patch 98.2 Local 0.000 0.000 11.23 36.51 0.835
Global 0.830 0.820 18.23 67.65 0.240
LaVAN 100 Local 0.005 0.000 15.47 36.52 0.850
Global 0.840 0.825 23.80 71.82 0.220
GDPA 77 94 Local 0.410 0.360 21.59 58.14 0.56
Global 0.910 0.900 29.66 72.23 0.110
MPGD (lo., ¢ = 16/255) 97.9 Local 0.600 0.520 27.45 61.22 0.390
Global 0.940 0.920 35.57 85.00 0.080
Ours 99.0 Local 0.860 0.780 29.8 63.00 0.300
Global 0.980 0.960 38.10 86.00 0.055

Table 8.11: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with Swin Transformer Base as the victim model on the VGG Face
dataset for the Target class "Aamir Khan". For SSIM, UIQ, SRE and CLIP scores, the
higher (1) the better, while the lower (|) the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM (1) UIQ() SRE(1) CLIP(f) LPIPS(})

Google Patch 972 Local 0.000 0.000 10.78 36.85 0.900
Global 0.830 0.820 18.10 69.36 0.260
LaVAN 99.3 Local 0.004 0.000 15.00 36.49 0.850
Global 0.840 0.824 23.40 71.68 0.220
GDPA 551 Local 0.160 0.140 18.36 65.87 0.700
Global 0.920 0.920 30.10 84.10 0.090
MPGD (loo, € = 16/255) 80.81 Local 0.610 0.530 27.35 61.22 0.390
Global 0.940 0.930 35.47 85.28 0.080
Ours 97.0 Local 0.840 0.760 29.63 61.00 0.300
Global 0.970 0.960 37.84 86.00 0.055
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Table 8.12: Detailed evaluation and comparison of attack efficacy through ASR (%) and
imperceptibility with Swin Transformer Base as the victim model on the VGG Face
dataset for the Target class "Aaron Staton". For SSIM, UIQ, SRE and CLIP scores, the
higher (1) the better, while the lower (|) the better for LPIPS.

Imperceptibility metric

Method ASR(%) Scale
SSIM (1) UIQ() SRE({) CLIP({) LPIPS(|)

Google Patch 98.3 Local 0.000 0.000 11.86 35.58 0.920
Global 0.830 0.820 17.78 68.63 0.280
LaVAN 99.8 Local 0.006 0.000 15.73 36.70 0.850
Global 0.840 0.825 24.12 71.96 0.210
GDPA 84.9 Local 0.290 0.260 19.76 57.25 0.620
Global 0.910 0.910 29.72 78.20 0.100
MPGD (los, € = 16/255) 94.9 Local 0.630 0.550 27.75 61.50 0.370
Global 0.950 0.930 35.84 86.54 0.070
Ours 98.6 Local 0.880 0.810 30.50 63.50 0.250
Global 0.980 0.970 38.84 88.40 0.045




Chapter 9
Ablation Studies

We conducted a series of ablation studies to systematically analyze the key components
of our method and their individual contributions to overall performance. Specifically, we
examine elements that exhibit strong correlations with our findings. First, we investigate
the effect of patch size, followed by an analysis of the number of update iterations and
the regularization coefficient associated with the distance term in the loss function, as
defined in Equation (4.10).

Additionally, we assess the impact of the update rule employed for perturbation op-
timization by comparing our approach with a widely used update strategy from the
Adam Optimizer. Lastly, we evaluate a commonly held assumption about adversarial
patches, namely that they predominantly attract the classifier’s attention, thereby induc-
ing misclassification. To test this, we measured the proportion of generated adversarial
samples in which the highest attention region, as identified by GradCAM, overlaps with
the attack location. This assessment is particularly significant, as the attention map’s
localization of adversarial perturbations can serve as an indicator for their detection. For
all our experiments we used ImageNet as the dataset and Swin Transformer Base as the
victim model.

9.1 Effect of Patch Size on the Attack

From the existing literature, it is clear that patch size significantly impacts attack effi-
cacy as increasing the patch size leads to stronger attack. We wanted to evaluate the
same for our method along with its impact on imperceptibility. We hypothesized that
increasing the attack area will lead to stronger attack performance as well as stronger
imperceptibility performance as perturbations have more area to disperse into while
not being salient. The results validated our theory as with the increase in the patch size
increased the attack efficacy as a 99.4% ASR was achieved with a patch size that covered
14% of the total image compared to 22.1% ASR for 2% coverage. It is worth noting that
for patch coverage equal to or exceeding 8%, our success rates attain 92.5% or higher.
The detailed results are summarized in table 9.1. A similar trend is observed where the
imperceptibility of the adversarial sample achieves more desirable values as the patch
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coverage increases, as visualized in 9.1.

9.2 Effect of Number of Update Iterations on the Attack

As the number of updates to the patch increases, its appearance diverges further from the
original state, even if the updates do not result in highly salient features. Based on the
update rule employed in our methodology, we argue that while the perturbations remain
less salient, the original appearance of the location may undergo significant alterations
with a higher number of iterations. However, it is important to note that more iterations
typically lead to higher attack success rates. In this set of experiments, we fixed the patch
size at 6% to emphasize the impact of both attack efficacy and imperceptibility. The
detailed results are summarized in table 9.2, We observe an increase in attack success rates
as the number of iterations grows. While there is a slight decrease in imperceptibility, the
reduction is not drastic, suggesting that the method maintains stability even with higher
iteration counts.

9.3 Effect of Distance Term Regularization Coefficient on
the Attack

We aimed to investigate the effect of the regularization coefficient w3 associated with
the human-oriented distance metric (Equation 4.7), which is included in the total loss
function (Equation 4.10). We hypothesized that increasing the value of w3 would improve
imperceptibility at the cost of slightly reducing attack performance. Our observations,
as shown in Table 9.3, support this hypothesis to some extent. Initially, as ws increases,
the attack success rate decreases slightly while imperceptibility improves. However,
as we continue to increase ws , the trend reverses. We attribute this behavior to the
destabilizing effect of a large w3 value on the overall loss function. This causes the
loss to become dominated by the regularization term, requiring more iterations for the
attack to succeed. Although this results in successful attacks, it leads to a reduction in
imperceptibility performance.

9.4 Effect of Update Rule on the Attack

As outlined in the methodology, the update rule proposed in our work allows for longer
update iterations without any constraints on the perturbation magnitude, while still
maintaining high levels of imperceptibility. To conclusively demonstrate its contribution,
we compared our proposed update rule with the widely-used update rule from the
Adam Optimizer, which is commonly employed in most studies. The Adam Optimizer
update rule is highly optimized to minimize the overall loss with a strong emphasis on
attack success, leading us to hypothesize that it would result in a higher attack success
rate. However, due to the inherent nature of Adam’s updates, which modify each color
channel separately, the updates can alter the base color of the pixel. In contrast, our
method preserves the base color of the pixel. The results, as shown in Table 9.4, validate
our approach. While following Adam Optimizer’s update rule led to a slightly higher
success rate, our method outperformed Adam Optimizer in terms of imperceptibility.
Figure 9.3 illustrates the adversarial patches generated by both approaches.
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2% 6% 10% 14%

Figure 9.1: Visualizations of the impact of the patch sizes on attack imperceptibility. =
represent the benign sample’s original class and 2 represent the adversarial samples with
the generated adversarial patch corresponding to the target class. The smaller images at
the right-bottom corner correspond to the optimal location (', j').

500 1500 2500 3500

Figure 9.2: Visualizations of the impact of the number of update iteration on attack
imperceptibility. & represent the adversarial samples with the generated adversarial
patch. The smaller images at the right-bottom corner correspond to the optimal location
(7, 7). x axis represents the number of update iteration.
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Table 9.1: Impact of patch size on attack performance represented through ASR (%)
and imperceptibility with Swin Transformer Base as the victim model on the ImageNet
dataset. For SSIM, UIQ, SRE and CLIP scores, the higher (1) the better, while the lower
(J) the better for LPIPS.

Imperceptibility metric
SSIM (1) UIQ(1) SRE(f) CLIP(t) LPIPS(])

Patch Size(%) ASR(%) Scale

2 1 Local 0.640 0.530 21.07 70.00 0.413
Global 0.992 0.985 38.10 98.20 0.014
4 468 Local 0.784 0.683 23.32 70.77 0.308
Global 0.991 0.972 37.68 98.11 0.014
6 70.0 Local 0.854 0.756 25.02 74.74 0.024
Global 0.991 0.970 37.86 98.18 0.013
8 95 Local 0.896 0.810 26.77 78.05 0.183
Global 0.991 0.970 38.14 98.15 0.012
10 98.1 Local 0.920 0.840 27.90 80.91 0.152
Global 0.992 0.970 38.31 97.97 0.011
12 99.0 Local 0.934 0.860 28.90 83.43 0.126
Global 0.992 0.965 38.46 98.03 0.011
14 99.4 Local 0.970 0.910 31.30 89.33 0.070
Global 0.994 0.970 40.10 98.43 0.010

Adam Ours

Figure 9.3: Visualizations of adversarial patch generated by update rule from Adam
optimizer vs ours. z represent the benign sample’s original class and & represent the
adversarial samples with the generated adversarial patch corresponding to the target
class. The smaller images at the right-bottom corner correspond to the optimal location

(@, 3").
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Table 9.2: Impact of number of update iterations on attack performance, represented
through ASR (%) and imperceptibility with Swin Transformer Base as the victim model
on the ImageNet dataset. For SSIM, UIQ, SRE and CLIP scores, the higher (1) the better,
while the lower ({) the better for LPIPS. Patch size is kept fixed at 6%

Imperceptibility metric

SSIM () UIQ() SRE() CLIP(f) LPIPS (})

No. Iters ASR(%) Scale

500 86.0 Local 0.870 0.770 25.88 75.87 0.223
Global 0.992 0.972 38.48 98.23 0.015
1000 70.0 Local 0.854 0.756 25.02 7474 0.024
Global 0.991 0.970 37.86 98.18 0.013
1500 96.2 Local 0.850 0.755 2491 73.81 0.024
Global 0.991 0.969 37.70 98.10 0.016
2000 973 Local 0.843 0.749 24.77 73.29 0.246
Global 0.990 0.968 37.59 98.04 0.017
2500 98.0 Local 0.840 0.746 24.67 72.87 0.249
Global 0.990 0.967 37.50 98.02 0.017
3000 985 Local 0.836 0.743 24.48 72.78 0.252
Global 0.990 0.966 37.41 97.98 0.017
3500 98.6 Local 0.834 0.741 24.65 72.49 0.254
Global 0.990 0.969 37.40 97.92 0.017

9.5 GradCAM analysis of attention overlap with patch
location.

Initially stated by Brown et al. (4), the adversarial patches are significantly salient and
consequently draws all the attention of the classifiers and hence results in misclassifi-
cation. This was investigated by Karmon et al. (22) where they found it inconsistent
with their work. Hence considering the patches generated by our method which are
not salient we wanted to explore whether the explanation by Brown et al. holds true for
our work. We evaluated the attention maps generated by GradCAM corresponding to
the adversarial samples generated by our method. We argued that if the location with
maximum attention on the attention map lies within the attack area then the argument by
Brown et al. holds true. Hence we measured the total proportion of adversarial samples
for which this overlap holds for each of the victim models considered. From the results
as presented on Table 9.5 we can say that on an average for almost 71% of the adversarial
samples the highest attention point determined by GradCAM do not lie on attack surface.
Visualisation of this behavior is represented in Figure 9.4. Considering many defense
methods analyses the attention maps of these models corresponding to the adversarial
samples for detection, this insights is primarily important as it solidifies the stealthy
nature of our method.
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Table 9.3: Impact of distance term regularization coefficient w3 on attack performance
represented through ASR (%) and imperceptibility with Swin Transformer Base as the
victim model on the ImageNet dataset. For SSIM, UIQ, SRE and CLIP scores, the higher
(1) the better, while the lower () the better for LPIPS.

Imperceptibility metric

SSIM () UIQ () SRE(1) CLIP() LPIPS(})

w3z ASR(%) Scale

0 99.0 Local 0.943 0.873 29.76 85.54 0.111
Global 0.992 0.964 38.59 97.95 0.017
1 98.9 Local 0.944 0.874 29.79 85.65 0.110
Global 0.992 0.965 38.62 97.97 0.017
4 98.9 Local 0.945 0.875 29.83 85.66 0.109
Global 0.992 0.965 38.67 97.99 0.017
v 98.8 Local 0.946 0.876 29.84 85.68 0.108
Global 0.992 0.966 38.69 98.01 0.016
10 99.1 Local 0.945 0.875 29.83 85.71 0.108
Global 0.992 0.965 38.66 97.98 0.017
13 99.0 Local 0.944 0.874 29.78 85.56 0.110
Global 0.992 0.965 38.60 97.98 0.017

X

at

Figure 9.4: Visualization of the shift in high attention location from the original benign
sample compared to that of the adversarial sample. x represent the benign sample and &
represent the adversarial samples with the generated adversarial patch corresponding to
the target class. x4+ and &, represents the attention map generated corresponding to the
original benign sample and the adversarial sample. the red square on Z,; represent the
attack location.
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Table 9.4: Impact of the update rule on attack performance represented through ASR (%)
and imperceptibility with Swin Transformer Base as the victim model on the ImageNet
dataset. For SSIM, UIQ, SRE and CLIP scores, the higher (1) the better, while the lower
(J) the better for LPIPS.

Imperceptibility metric
SSIM (1) UIQ (1) SRE(f) CLIP(1) LPIPS(])

Update Rule ASR(%) Scale

Adam 100 Local 0.130 0.157 17.13 36.15 0.662
Global 0.867 0.848 25.98 80.94 0.130
Ours 99.4 Local 0.970 0.910 31.30 89.33 0.070
Global 0.994 0.970 40.10 98.43 0.010

Table 9.5: Assessment of whether the GradCAM'’s highest attention location overlaps
with the adversarial patch location.

Model NoPatchLoc(%)
VGG16 72.15
ResNet-50 53.70
Swin Transformer Tiny 73.11
Swin Transformer Base 81.30

Average 70.7




Chapter 10
Discussion and Future Directions

Through this work we made an attempt to demonstrate that adversarial patch attacks
can be designed to achieve both high attack effectiveness and strong imperceptibility.
Our approach ensures that the generated adversarial patches are not only visually
inconspicuous to human observers but also remain undetectable by state-of-the-art
defense mechanisms designed to counter such attacks.

To achieve this, we proposed a general attack pipeline that prioritizes high targeted
attack success rates while maintaining a high degree of imperceptibility. This design
choice ensures that the underlying principles of our method can be effectively translated
into real-world applications with slight modification for adaptations. Through extensive
evaluations, we validated the effectiveness and stability of our proposed approach across
multiple datasets and a diverse range of classifier architectures. The results consistently
demonstrated the robustness of our method in maintaining a high attack success rate
without compromising stealth.

Furthermore, we evaluated the ability of our attack to bypass state-of-the-art adversarial
defense mechanisms. The results of these experiments provide compelling evidence that
our approach successfully circumvents advanced defense strategies, further reinforcing
the effectiveness of our proposed methodology.

These findings also highlight the pressing need for the development of more robust de-
fense mechanisms that go beyond reliance on human-perceptible visual cues. Traditional
defenses often focus on detecting perturbations based on features that are noticeable
to the human eye. However, our results suggest that such an approach may be fun-
damentally insufficient, as machine perception does not always align perfectly with
human vision. Hence, features that look visually benign can be in reality be adversarially
designed. Adversarial attacks, including our method, exploit these discrepancies by
introducing perturbations that may be imperceptible to human observers but signif-
icantly impact model predictions. This misalignment underscores the importance of
designing defense mechanisms that understand and address the underlying feature
representations that contribute to model misclassification. Instead of solely depending
on human-intuitive visual patterns, future defenses must integrate a deeper understand-
ing of the internal decision-making processes of machine learning models. Failure to
do so leaves exploitable loopholes that adversaries can readily manipulate, ultimately
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compromising the security and robustness of deployed models.

A key factor contributing to the success of our method is its ability to subtly manipulate
the model’s attention, guiding it toward targeted misclassification without explicitly
drawing focus to the adversarial patch itself. Unlike conventional adversarial patches,
which often attract excessive attention and can be more easily detected, our approach
ensures that the perturbations remain inconspicuous while still exerting a significant
influence on the classifier’s decision-making process. This unique characteristic makes
our method not only highly effective but also exceptionally stealthy, setting it apart from
existing adversarial attack strategies.

While our study demonstrates the effectiveness of the proposed adversarial patch attack,
we acknowledge certain limitations and drawbacks that should be addressed in future
research. Identifying and overcoming these challenges will be crucial in further refining
adversarial attack methodologies.

One key limitation of our approach is its dependence on relatively larger patch sizes,
covering approximately 14% of the total image area. Although the attack success rate
remains high even when using smaller patches, this often comes at the cost of reduced
imperceptibility. This trade-off suggests that further optimization techniques are required
to enhance the stability of the attack, ensuring that imperceptibility is maintained across
varying patch sizes. Developing more sophisticated optimization strategies could help
mitigate this limitation, making the attack less dependent on patch size while preserving
both effectiveness and stealth.

Another limitation arises from the nature of our update rule. While it effectively preserves
the base color of pixels by modifying only their brightness and saturation, it remains
independent of the surrounding pixel intensities and brightness levels. Consequently, in
certain cases, the update rule may generate isolated pixels with extreme brightness or
darkness that contrast starkly with their neighboring pixels. This inconsistency in pixel
appearance can impact the overall imperceptibility of the adversarial patch, making it
more detectable under close examination. To address this, future research should explore
methods that incorporate contextual awareness into the update process, ensuring that
modifications are not only effective but also blend seamlessly with the surrounding
image regions.

By addressing these limitations, future advancements in adversarial patch attacks can
achieve greater robustness, making them more adaptable while maintaining high im-
perceptibility. These improvements will be essential in understanding and mitigating
adversarial vulnerabilities in machine learning models.

The growing sophistication of adversarial attacks, as demonstrated in our study, un-
derscores the urgent need for the development of defense mechanisms that go beyond
surface-level perturbation detection and instead focus on understanding the underlying
reasons behind model vulnerabilities. An effective approach would involve designing
robust defense strategies that analyze the internal feature representations contributing to
misclassification, thereby addressing the root cause of adversarial susceptibility rather
than merely reacting to observable perturbations. Such defenses should not only detect
and neutralize adversarial manipulations but also ensure that the classifier’s normal
performance remains unaffected. Striking this balance is crucial, as overly rigid defense
mechanisms can degrade model accuracy on benign inputs, reducing their practical
usability. By integrating a deeper understanding of decision-making processes in neural
networks and ensuring adaptability across varying adversarial strategies, future defense
techniques can provide long-term robustness against evolving attack methodologies
while maintaining reliable classification performance in real-world applications.



Chapter 11
Conclusion

In this master’s thesis, we developed a general methodology for generating impercep-
tible adversarial patches that achieve high targeted attack success rates. Instead of
approaching the imperceptibility problem from a ¢,-norm bounded perspective, our
proposed perturbation curation optimization scheme balances targeted attack success
while producing updates that is agnostic to human perception, enabling effective misclas-
sifications of state-of-the-art classifiers while remaining visually inconspicuous. Through
extensive evaluations across multiple datasets and classifier architectures along with
their comparison to the existing attack methods, we demonstrated the robustness and
stability of our method, achieving targeted misclassification without drawing model’s
attention to the patch.

Our findings emphasize the need for more advanced defense mechanisms that move
beyond detecting only human-perceptible perturbations. Since machine perception
differs significantly from human vision, defenses relying solely on visual cues remain
vulnerable. Our experiments demonstrated this by successfully bypassing state-of-the-
art defense methods. Therefore, future defense strategies should focus on understanding
the underlying feature representations that drive model misclassification, ensuring both
robustness against attacks and reliable performance on benign inputs.

Despite its effectiveness, our approach has certain limitations, including its dependence
on larger patch sizes and the potential for isolated pixel artifacts. Addressing these
through improved optimization techniques and contextual awareness in perturbation
updates will further enhance attack imperceptibility and adaptability. This work con-
tributes to the understanding of adversarial robustness and highlights key areas for
future research in both attack development and defense strategies.
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